Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Microwave internal gelation (MIG) is a chemical process proposed for the production of nuclear particle fuel. The internal gelation reaction is triggered by a temperature increase of aqueous droplets falling by gravity by means of non-contact microwave heating. Due to the short residence time of a solution droplet in a microwave heating cavity, a detailed knowledge of the interaction between microwaves and chemical solution (shaped in small drops) is required. This paper describes a procedure that enables the measurement of the dielectric properties of aqueous droplets that freely fall through a microwave cavity. These measurements provide the information to determine the optimal values of the parameters (such as frequency and power) that dictate the heating of such a material under microwaves.