Face perceptionFacial perception is an individual's understanding and interpretation of the face. Here, perception implies the presence of consciousness and hence excludes automated facial recognition systems. Although facial recognition is found in other species, this article focuses on facial perception in humans. The perception of facial features is an important part of social cognition. Information gathered from the face helps people understand each other's identity, what they are thinking and feeling, anticipate their actions, recognize their emotions, build connections, and communicate through body language.
Extraocular musclesThe extraocular muscles, or extrinsic ocular muscles, are the seven extrinsic muscles of the human eye. Six of the extraocular muscles, the four recti muscles, and the superior and inferior oblique muscles, control movement of the eye and the other muscle, the levator palpebrae superioris, controls eyelid elevation. The actions of the six muscles responsible for eye movement depend on the position of the eye at the time of muscle contraction. Since only a small part of the eye called the fovea provides sharp vision, the eye must move to follow a target.
Rapid eye movement sleepRapid eye movement sleep (REM sleep or REMS) is a unique phase of sleep in humans, mammals and birds, characterized by random rapid movement of the eyes, accompanied by low muscle tone throughout the body, and the propensity of the sleeper to dream vividly. The REM phase is also known as paradoxical sleep (PS) and sometimes desynchronized sleep or dreamy sleep, because of physiological similarities to waking states including rapid, low-voltage desynchronized brain waves.
Depth perceptionDepth perception is the ability to perceive distance to objects in the world using the visual system and visual perception. It is a major factor in perceiving the world in three dimensions. Depth perception happens primarily due to stereopsis and accommodation of the eye. Depth sensation is the corresponding term for non-human animals, since although it is known that they can sense the distance of an object, it is not known whether they perceive it in the same way that humans do. Depth perception arises from a variety of depth cues.
Visual agnosiaVisual agnosia is an impairment in recognition of visually presented objects. It is not due to a deficit in vision (acuity, visual field, and scanning), language, memory, or intellect. While cortical blindness results from lesions to primary visual cortex, visual agnosia is often due to damage to more anterior cortex such as the posterior occipital and/or temporal lobe(s) in the brain.[2] There are two types of visual agnosia: apperceptive agnosia and associative agnosia. Recognition of visual objects occurs at two primary levels.
Visual memoryVisual memory describes the relationship between perceptual processing and the encoding, storage and retrieval of the resulting neural representations. Visual memory occurs over a broad time range spanning from eye movements to years in order to visually navigate to a previously visited location. Visual memory is a form of memory which preserves some characteristics of our senses pertaining to visual experience. We are able to place in memory visual information which resembles objects, places, animals or people in a mental image.
Multistable perceptionMultistable perception (or bistable perception) is a perceptual phenomenon in which an observer experiences an unpredictable sequence of spontaneous subjective changes. While usually associated with visual perception (a form of optical illusion), multistable perception can also be experienced with auditory and olfactory percepts. Perceptual multistability can be evoked by visual patterns that are too ambiguous for the human visual system to definitively and uniquely interpret.
Tunnel visionTunnel vision is the loss of peripheral vision with retention of central vision, resulting in a constricted circular tunnel-like field of vision. Tunnel vision can be caused by: Eyeglass users experience tunnel vision to varying degrees due to the corrective lens only providing a small area of proper focus, with the rest of the field of view beyond the lenses being unfocused and blurry. Where a naturally sighted person only needs to move their eyes to see an object far to the side or far down, the eyeglass wearer may need to move their whole head to point the eyeglasses towards the target object.
Action-specific perceptionAction-specific perception, or perception-action, is a psychological theory that people perceive their environment and events within it in terms of their ability to act. This theory hence suggests that a person's capability to carry out a particular task affects how they perceive the different aspects and methods involved in that task. For example, softball players who are hitting better see the ball as bigger. Tennis players see the ball as moving slower when they successfully return the ball.
Brodmann areaA Brodmann area is a region of the cerebral cortex, in the human or other primate brain, defined by its cytoarchitecture, or histological structure and organization of cells. The concept was first introduced by the German anatomist Korbinian Brodmann in the early 20th century. Brodmann mapped the human brain based on the varied cellular structure across the cortex and identified 52 distinct regions, which he numbered 1 to 52. These regions, or Brodmann areas, correspond with diverse functions including sensation, motor control, and cognition.