How does reliable computation emerge from networks of noisy neurons? While individual neurons are intrinsically noisy, the collective dynamics of populations of neurons taken as a whole can be almost deterministic, supporting the hypothesis that, in the br ...
Intrinsic neutron noise experiments offer a non-invasive manner to measure the prompt decay constant or reactivity of fissile systems. Using the fluctuations in the density of fission chains, one can infer the kinetics parameters via correlation analysis s ...
While most models of randomly connected neural networks assume single-neuron models with simple dynamics, neurons in the brain exhibit complex intrinsic dynamics over multiple timescales. We analyze how the dynamical properties of single neurons and recurr ...
The interpretation of neuronal spike train recordings often relies on abstract statistical models that allow for principled parameter estimation and model selection but provide only limited insights into underlying microcircuits. In contrast, mechanistic m ...
Cryo-electron microscopy recently experienced great improvements in structure resolution due to direct electron detectors with improved contrast and fast read-out leading to single electron counting. High frames rates enabled dose fractionation, where a lo ...
Nerve cells in the brain generate sequences of action potentials with a complex statistics. Theoretical attempts to understand this statistics were largely limited to the case of a temporally uncorrelated input (Poissonian shot noise) from the neurons in t ...
The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then stagge ...
Networks of fast nonlinear elements may display slowfluctuations if interactions are strong. We find a transition in the long-term variability of a sparse recurrent network of perfect integrate-and-fire neurons at which the Fano factor switches from zero t ...
Uniform random sparse network architectures are ubiquitous in computational neuroscience, but the implicit hypothesis that they are a good representation of real neuronal networks has been met with skepticism. Here we used two experimental data sets, a stu ...
Random networks of integrate-and-fire neurons with strong current-based synapse scan, unlike previously believed, assume stable states of sustained asynchronous and irregular firing, even without external random background or pacemaker neurons. We analyze ...
Frontiers Research Foundation2014
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.