Gauss sumIn algebraic number theory, a Gauss sum or Gaussian sum is a particular kind of finite sum of roots of unity, typically where the sum is over elements r of some finite commutative ring R, ψ is a group homomorphism of the additive group R+ into the unit circle, and χ is a group homomorphism of the unit group R× into the unit circle, extended to non-unit r, where it takes the value 0. Gauss sums are the analogues for finite fields of the Gamma function. Such sums are ubiquitous in number theory.
Langlands programIn representation theory and algebraic number theory, the Langlands program is a web of far-reaching and influential conjectures about connections between number theory and geometry. Proposed by , it seeks to relate Galois groups in algebraic number theory to automorphic forms and representation theory of algebraic groups over local fields and adeles. Widely seen as the single biggest project in modern mathematical research, the Langlands program has been described by Edward Frenkel as "a kind of grand unified theory of mathematics.
Atle SelbergAtle Selberg (14 June 1917 – 6 August 2007) was a Norwegian mathematician known for his work in analytic number theory and the theory of automorphic forms, and in particular for bringing them into relation with spectral theory. He was awarded the Fields Medal in 1950 and an honorary Abel Prize in 2002. Selberg was born in Langesund, Norway, the son of teacher Anna Kristina Selberg and mathematician Ole Michael Ludvigsen Selberg. Two of his three brothers, Sigmund and Henrik, were also mathematicians.
Formula for primesIn number theory, a formula for primes is a formula generating the prime numbers, exactly and without exception. No such formula which is efficiently computable is known. A number of constraints are known, showing what such a "formula" can and cannot be. A simple formula is for positive integer , where is the floor function, which rounds down to the nearest integer. By Wilson's theorem, is prime if and only if . Thus, when is prime, the first factor in the product becomes one, and the formula produces the prime number .
Spectral theoryIn mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result of studies of linear algebra and the solutions of systems of linear equations and their generalizations. The theory is connected to that of analytic functions because the spectral properties of an operator are related to analytic functions of the spectral parameter.
Dirichlet characterIn analytic number theory and related branches of mathematics, a complex-valued arithmetic function is a Dirichlet character of modulus (where is a positive integer) if for all integers and : that is, is completely multiplicative. (gcd is the greatest common divisor) that is, is periodic with period . The simplest possible character, called the principal character, usually denoted , (see Notation below) exists for all moduli: The German mathematician Peter Gustav Lejeune Dirichlet—for whom the character is named—introduced these functions in his 1837 paper on primes in arithmetic progressions.
Spectral theoremIn mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces.
InfinityInfinity is something which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol . Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions among philosophers. In the 17th century, with the introduction of the infinity symbol and the infinitesimal calculus, mathematicians began to work with infinite series and what some mathematicians (including l'Hôpital and Bernoulli) regarded as infinitely small quantities, but infinity continued to be associated with endless processes.
ProvenceProvence (prəˈvɒ̃s, USalsoprəʊˈ-, UKalsoprɒˈ-, pʁɔvɑ̃s) is a geographical region and historical province of southeastern France, which extends from the left bank of the lower Rhône to the west to the Italian border to the east; it is bordered by the Mediterranean Sea to the south. It largely corresponds with the modern administrative region of Provence-Alpes-Côte d'Azur and includes the departments of Var, Bouches-du-Rhône, Alpes-de-Haute-Provence, as well as parts of Alpes-Maritimes and Vaucluse.
Pierpont primeIn number theory, a Pierpont prime is a prime number of the form for some nonnegative integers u and v. That is, they are the prime numbers p for which p − 1 is 3-smooth. They are named after the mathematician James Pierpont, who used them to characterize the regular polygons that can be constructed using conic sections. The same characterization applies to polygons that can be constructed using ruler, compass, and angle trisector, or using paper folding. Except for 2 and the Fermat primes, every Pierpont prime must be 1 modulo 6.