Publication

Linear response to a heat-driven spin torque

Abstract

The existence of a heat-driven spin torque is demonstrated using Co/Cu/Co spin valves embedded in metallic nanowires. Heat currents flowing in one direction or its opposite were obtained by heating optically one end or the other of the nanowires. The spin torque associated with the heat-driven spin current pushes the magnetization out of equilibrium, resulting in a change of the magnetoresistance, which is detected using a charge current small enough not to cause heating or induced fields of any significance. The giant magnetoresistance response to this torque peaks with the magnetic susceptibility, whereas the spurious signal coming from the temperature dependence of the resistance produces merely a field independent baseline. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.