Publication

First-principles determination of defect energy levels through hybrid density functionals and GW

Alfredo Pasquarello, Wei Chen
2015
Journal paper
Abstract

In this topical review, we discuss recent progress in electronic-structure methods for calculating defect energy levels in semiconductors and insulators. We concentrate mainly on two advanced electronic-structure schemes, namely hybrid density functional theory and many-body perturbation theory in the GW approximation. These two schemes go beyond standard density functional theory in the semilocal approximation providing a more realistic description of band gaps. In particular, we address important aspects underlying the GW scheme and highlight the correspondence between the defect levels as obtained in the various schemes. We further assess the quality of the band-edge positions determined with hybrid functionals and GW through the calculation of band-offsets at semiconductor heterojunctions and of ionization potentials at semiconductor surfaces.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.