Genome-wide association studyIn genomics, a genome-wide association study (GWA study, or GWAS), is an observational study of a genome-wide set of genetic variants in different individuals to see if any variant is associated with a trait. GWA studies typically focus on associations between single-nucleotide polymorphisms (SNPs) and traits like major human diseases, but can equally be applied to any other genetic variants and any other organisms. When applied to human data, GWA studies compare the DNA of participants having varying phenotypes for a particular trait or disease.
Genetic diversityGenetic diversity is the total number of genetic characteristics in the genetic makeup of a species, it ranges widely from the number of species to differences within species and can be attributed to the span of survival for a species. It is distinguished from genetic variability, which describes the tendency of genetic characteristics to vary. Genetic diversity serves as a way for populations to adapt to changing environments. With more variation, it is more likely that some individuals in a population will possess variations of alleles that are suited for the environment.
Genetic hitchhikingGenetic hitchhiking, also called genetic draft or the hitchhiking effect, is when an allele changes frequency not because it itself is under natural selection, but because it is near another gene that is undergoing a selective sweep and that is on the same DNA chain. When one gene goes through a selective sweep, any other nearby polymorphisms that are in linkage disequilibrium will tend to change their allele frequencies too. Selective sweeps happen when newly appeared (and hence still rare) mutations are advantageous and increase in frequency.
Coloration evidence for natural selectionAnimal coloration provided important early evidence for evolution by natural selection, at a time when little direct evidence was available. Three major functions of coloration were discovered in the second half of the 19th century, and subsequently used as evidence of selection: camouflage (protective coloration); mimicry, both Batesian and Müllerian; and aposematism. Charles Darwin's On the Origin of Species was published in 1859, arguing from circumstantial evidence that selection by human breeders could produce change, and that since there was clearly a struggle for existence, that natural selection must be taking place.
Allochronic speciationAllochronic speciation (also known as allochronic isolation, or temporal isolation) is a form of speciation (specifically ecological speciation) arising from reproductive isolation that occurs due to a change in breeding time that reduces or eliminates gene flow between two populations of a species. The term allochrony is used to describe the general ecological phenomenon of the differences in phenology that arise between two or more species—speciation caused by allochrony is effectively allochronic speciation.
Genetic variabilityGenetic variability is either the presence of, or the generation of, genetic differences. It is defined as "the formation of individuals differing in genotype, or the presence of genotypically different individuals, in contrast to environmentally induced differences which, as a rule, cause only temporary, nonheritable changes of the phenotype". Genetic variability in a population is important for biodiversity. There are many sources of genetic variability in a population: Homologous recombination is a significant source of variability.
Divergent evolutionDivergent evolution or divergent selection is the accumulation of differences between closely related populations within a species, sometimes leading to speciation. Divergent evolution is typically exhibited when two populations become separated by a geographic barrier (such as in allopatric or peripatric speciation) and experience different selective pressures that drive adaptations to their new environment. After many generations and continual evolution, the populations become less able to interbreed with one another.
Human evolutionary geneticsHuman evolutionary genetics studies how one human genome differs from another human genome, the evolutionary past that gave rise to the human genome, and its current effects. Differences between genomes have anthropological, medical, historical and forensic implications and applications. Genetic data can provide important insights into human evolution. Biologists classify humans, along with only a few other species, as great apes (species in the family Hominidae).
Stabilizing selectionStabilizing selection (not to be confused with negative or purifying selection) is a type of natural selection in which the population mean stabilizes on a particular non-extreme trait value. This is thought to be the most common mechanism of action for natural selection because most traits do not appear to change drastically over time. Stabilizing selection commonly uses negative selection (a.k.a. purifying selection) to select against extreme values of the character. Stabilizing selection is the opposite of disruptive selection.
Adaptation and Natural SelectionAdaptation and Natural Selection: A Critique of Some Current Evolutionary Thought is a 1966 book by the American evolutionary biologist George C. Williams. Williams, in what is now considered a classic by evolutionary biologists, outlines a gene-centered view of evolution, disputes notions of evolutionary progress, and criticizes contemporary models of group selection, including the theories of Alfred Emerson, A. H. Sturtevant, and to a smaller extent, the work of V. C. Wynne-Edwards.