Jet propulsionJet propulsion is the propulsion of an object in one direction, produced by ejecting a jet of fluid in the opposite direction. By Newton's third law, the moving body is propelled in the opposite direction to the jet. Reaction engines operating on the principle of jet propulsion include the jet engine used for aircraft propulsion, the pump-jet used for marine propulsion, and the rocket engine and plasma thruster used for spacecraft propulsion.
Nuclear cross sectionThe nuclear cross section of a nucleus is used to describe the probability that a nuclear reaction will occur. The concept of a nuclear cross section can be quantified physically in terms of "characteristic area" where a larger area means a larger probability of interaction. The standard unit for measuring a nuclear cross section (denoted as σ) is the barn, which is equal to e-28m2, e-24cm2 or 100fm2.
Energy–momentum relationIn physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum. It can be written as the following equation: This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m0, and momentum of magnitude p; the constant c is the speed of light.
Center-of-momentum frameIn physics, the center-of-momentum frame (COM frame), also known as zero-momentum frame, is the inertial frame in which the total momentum of the system vanishes. It is unique up to velocity, but not origin. The center of momentum of a system is not a location, but a collection of relative momenta/velocities: a reference frame. Thus "center of momentum" is a short for "center-of-momentum ". A special case of the center-of-momentum frame is the center-of-mass frame: an inertial frame in which the center of mass (which is a single point) remains at the origin.
Parton (particle physics)In particle physics, the parton model is a model of hadrons, such as protons and neutrons, proposed by Richard Feynman. It is useful for interpreting the cascades of radiation (a parton shower) produced from quantum chromodynamics (QCD) processes and interactions in high-energy particle collisions. Parton showers are simulated extensively in Monte Carlo event generators, in order to calibrate and interpret (and thus understand) processes in collider experiments.
Invariant massThe invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, it is a characteristic of the system's total energy and momentum that is the same in all frames of reference related by Lorentz transformations. If a center-of-momentum frame exists for the system, then the invariant mass of a system is equal to its total mass in that "rest frame".
MassMass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementary particles, theoretically with the same amount of matter, have nonetheless different masses. Mass in modern physics has multiple definitions which are conceptually distinct, but physically equivalent.
Jet airlinerA jet airliner or jetliner is an airliner powered by jet engines (passenger jet aircraft). Airliners usually have two or four jet engines; three-engined designs were popular in the 1970s but are less common today. Airliners are commonly classified as either the large wide-body aircraft, medium narrow-body aircraft and smaller regional jet. Most airliners today are powered by jet engines, because they are capable of safely operating at high speeds and generate sufficient thrust to power large-capacity aircraft.
AtomAn atom is a particle that consists of a nucleus of protons and neutrons surrounded by a cloud of electrons. The atom is the basic particle of the chemical elements, and the chemical elements are distinguished from each other by the number of protons that are in their atoms. For example, any atom that contains 11 protons is sodium, and any atom that contains 29 protons is copper. The number of neutrons defines the isotope of the element. Atoms are extremely small, typically around 100 picometers across.
RadiationIn physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: electromagnetic radiation, such as radio waves, microwaves, infrared, visible light, ultraviolet, x-rays, and gamma radiation (γ) particle radiation, such as alpha radiation (α), beta radiation (β), proton radiation and neutron radiation (particles of non-zero rest energy) acoustic radiation, such as ultrasound, sound, and seismic waves (dependent on a physical transmission medium) gravitational radiation, that takes the form of gravitational waves, or ripples in the curvature of spacetime Radiation is often categorized as either ionizing or non-ionizing depending on the energy of the radiated particles.