Dataflow programmingIn computer programming, dataflow programming is a programming paradigm that models a program as a directed graph of the data flowing between operations, thus implementing dataflow principles and architecture. Dataflow programming languages share some features of functional languages, and were generally developed in order to bring some functional concepts to a language more suitable for numeric processing. Some authors use the term datastream instead of dataflow to avoid confusion with dataflow computing or dataflow architecture, based on an indeterministic machine paradigm.
DataflowIn computing, dataflow is a broad concept, which has various meanings depending on the application and context. In the context of software architecture, data flow relates to stream processing or reactive programming. Dataflow computing is a software paradigm based on the idea of representing computations as a directed graph, where nodes are computations and data flow along the edges. Dataflow can also be called stream processing or reactive programming. There have been multiple data-flow/stream processing languages of various forms (see Stream processing).
Dataflow architectureDataflow architecture is a dataflow-based computer architecture that directly contrasts the traditional von Neumann architecture or control flow architecture. Dataflow architectures have no program counter, in concept: the executability and execution of instructions is solely determined based on the availability of input arguments to the instructions, so that the order of instruction execution may be hard to predict.
CommunicationCommunication is usually defined as the transmission of information. The term can also refer to the message itself, or the field of inquiry studying these transmissions, also known as communication studies. The precise definition of communication is disputed. Controversial issues are whether unintentional or failed transmissions are included and whether communication does not just transmit meaning but also create it. Models of communication aim to provide a simplified overview of its main components and their interaction.
Visual programming languageIn computing, a visual programming language (visual programming system, VPL, or, VPS) or block coding is a programming language that lets users create programs by manipulating program elements graphically rather than by specifying them textually. A VPL allows programming with visual expressions, spatial arrangements of text and graphic symbols, used either as elements of syntax or secondary notation.
Haptic communicationHaptic communication is a branch of nonverbal communication that refers to the ways in which people and animals communicate and interact via the sense of touch. Touch is the most sophisticated and intimate of the five senses. Touch or haptics, from the ancient Greek word haptikos is extremely important for communication; it is vital for survival. Touch is the first sense to develop in the fetus. The development of an infant's haptic senses and how it relates to the development of the other senses such as vision has been the target of much research.
Interpersonal communicationInterpersonal communication is an exchange of information between two or more people. It is also an area of research that seeks to understand how humans use verbal and nonverbal cues to accomplish a number of personal and relational goals. Interpersonal communication research addresses at least six categories of inquiry: 1) how humans adjust and adapt their verbal communication and nonverbal communication during face-to-face communication; 2) how messages are produced; 3) how uncertainty influences behavior and information-management strategies; 4) deceptive communication; 5) relational dialectics; and 6) social interactions that are mediated by technology.
MPEG-4MPEG-4 is a group of international standards for the compression of digital audio and visual data, multimedia systems, and file storage formats. It was originally introduced in late 1998 as a group of audio and video coding formats and related technology agreed upon by the ISO/IEC Moving Picture Experts Group (MPEG) (ISO/IEC JTC 1/SC29/WG11) under the formal standard ISO/IEC 14496 – Coding of audio-visual objects. Uses of MPEG-4 include compression of audiovisual data for Internet video and CD distribution, voice (telephone, videophone) and broadcast television applications.
Advanced Video CodingAdvanced Video Coding (AVC), also referred to as H.264 or MPEG-4 Part 10, is a video compression standard based on block-oriented, motion-compensated coding. It is by far the most commonly used format for the recording, compression, and distribution of video content, used by 91% of video industry developers . It supports a maximum resolution of 8K UHD. The intent of the H.264/AVC project was to create a standard capable of providing good video quality at substantially lower bit rates than previous standards (i.
MPEG-1MPEG-1 is a standard for lossy compression of video and audio. It is designed to compress VHS-quality raw digital video and CD audio down to about 1.5 Mbit/s (26:1 and 6:1 compression ratios respectively) without excessive quality loss, making video CDs, digital cable/satellite TV and digital audio broadcasting (DAB) practical. Today, MPEG-1 has become the most widely compatible lossy audio/video format in the world, and is used in a large number of products and technologies.