Summary
MPEG-4 is a group of international standards for the compression of digital audio and visual data, multimedia systems, and file storage formats. It was originally introduced in late 1998 as a group of audio and video coding formats and related technology agreed upon by the ISO/IEC Moving Picture Experts Group (MPEG) (ISO/IEC JTC 1/SC29/WG11) under the formal standard ISO/IEC 14496 – Coding of audio-visual objects. Uses of MPEG-4 include compression of audiovisual data for Internet video and CD distribution, voice (telephone, videophone) and broadcast television applications. The MPEG-4 standard was developed by a group led by Touradj Ebrahimi (later the JPEG president) and Fernando Pereira. MPEG-4 absorbs many of the features of MPEG-1 and MPEG-2 and other related standards, adding new features such as (extended) VRML support for 3D rendering, object-oriented composite files (including audio, video and VRML objects), support for externally specified Digital Rights Management and various types of interactivity. AAC (Advanced Audio Coding) was standardized as an adjunct to MPEG-2 (as Part 1) before MPEG-4 was issued. MPEG-4 is still an evolving standard and is divided into a number of parts. Companies promoting MPEG-4 compatibility do not always clearly state which "part" level compatibility they are referring to. The key parts to be aware of are MPEG-4 Part 2 (including Advanced Simple Profile, used by codecs such as DivX, Xvid, Nero Digital and 3ivx and by QuickTime 6) and MPEG-4 part 10 (MPEG-4 AVC/H.264 or Advanced Video Coding, used by the x264 encoder, Nero Digital AVC, QuickTime 7, and high-definition video media like Blu-ray Disc). Most of the features included in MPEG-4 are left to individual developers to decide whether or not to implement. This means that there are probably no complete implementations of the entire MPEG-4 set of standards. To deal with this, the standard includes the concept of "profiles" and "levels", allowing a specific set of capabilities to be defined in a manner appropriate for a subset of applications.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (11)
EE-719: Digital Speech and Audio Coding
The goal of this course is to introduce the engineering students state-of-the-art speech and audio coding techniques with an emphasis on the integration of knowledge about sound production and auditor
EE-555: Systems and architectures for signal processing
Study of the essential components and implementation technologies of digital signal processing and communication systems from the theoretical, algorithmic and system implementation point of view.
EE-552: Media security
This course provides attendees with theoretical and practical issues in media security. In addition to lectures by the professor, the course includes laboratory sessions, a mini-project, and a mid-ter
Show more
Related lectures (33)
Human Embryology: Development and Anatomy
Covers the importance of human embryology for careers in biology, medicine, and health sciences, focusing on the development of key organs and anatomical structures.
Media Security Standards
Explores the definition of media security standards and the standardization of a framework rather than a specific security tool.
ATP Synthase: Structure and Function
Explores the structure and function of ATP synthase in mitochondrial ATP production and delves into glucose metabolism and nucleotide structure.
Show more
Related publications (109)