Publication

A Methodology for Profiling and Partitioning Stream Programs on Many-core Architectures

Abstract

Maximizing the data throughput is a very common implementation objective for several streaming applications. Such task is particularly challenging for implementations based on many-core and multi-core target platforms because, in general, it implies tackling several NP- complete combinatorial problems. Moreover, an efficient design space exploration requires an accurate evaluation on the basis of dataflow program execution profiling. The focus of the paper is on the methodology challenges for obtaining accurate profiling measures. Experimental results validate a many-core platform built by an array of Transport Triggered Architecture processors for exploring the partitioning search space based on the execution trace analysis.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.