Photoinduced absorption spectroscopy is presented as a tool for the systematic study of dye regeneration and pore filling in solid state dye-sensitized solar cells. Oxidn. potentials and extinction coeffs. for oxidized species of the perylene dye, ID28, on TiO2 and of the hole conductor, 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene (spiro-MeOTAD), were detd. by spectroelectrochem. The onset of oxidn. of a solid film of spiro-MeOTAD was found to be 0.15 V vs. ferrocene/ferrocenium and extinction coeffs. of spiro-MeOTAD+ were found to be 33,000 M-1/cm-1 at 507 nm and 8500 M-1/cm-1 at 690 nm. Electrons in TiO2 films were shown to alter the ground-state absorption spectra of ID28 attached to TiO2. Photoinduced absorption measurements indicated a good contact between ID28 and spiro-MeOTAD for different spiro-MeOTAD concns. for both 2- and 6-μm thick TiO2 films. We discuss the possibility of estg. the quality of pore filling from the positions of absorption peaks. Results suggested that with a spiro-MeOTAD concn. of 300 mg/mL in chlorobenzene, a uniform distribution of spiro-MeOTAD in the pores of the 6-μm thick TiO2 film could be achieved.
Ulf Anders Hagfeldt, Thomas Moehl, Kazuteru Nonomura, Lorenzo Veronese
Michael Graetzel, Mohammad Khaja Nazeeruddin, Shaik Mohammed Zakeeruddin, Fabrizio Giordano, Ulf Anders Hagfeldt, Marina Freitag, Julian Burschka