Publication

Characterization of Surface Passivation by Poly(methylsiloxane) for Dye-Sensitized Solar Cells Employing the Ferrocene Redox Couple

Ulf Anders Hagfeldt
2010
Journal paper
Abstract

One-electron outer-sphere redox couples, such as ferrocene/ferrocenium, are an interesting alternative to the iodide/triiodide redox couple that is normally employed in dye-sensitized solar cells (DSCs) because they should reduce the driving force needed to regenerate the dye. Unfortunately, 1-electron redox couples also show enhanced recombination with photoinjected electrons, and methods to inhibit this recombination are needed for functioning DSCs. Dye-sensitized titanium dioxide surfaces were passivated by a trichloromethylsilane reaction to decrease the fast recombination rates when using the ferrocene redox couple. The formation and binding of poly(methylsiloxane) on the dye-sensitized TiO2 surface was verified with IR spectroscopy and photoelectron spectroscopy. Photoelectrochem. characterization of the silanization method showed that the treatment decreased the recombination rate of photoinjected electrons with ferrocenium and thereby improved the efficiency of the DSC. Transient absorption spectroscopy revealed, however, that the poly(methylsiloxane) coatings slowed down the regeneration of the oxidized dye by the ferrocene and prevented the regeneration of some of the dye mols.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.