Variational Gaussian Inference for Bilinear Models of Count Data
Related publications (54)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
xtreme value analysis is concerned with the modelling of extreme events such as floods and heatwaves, which can have large impacts. Statistical modelling can be useful to better assess risks even if, due to scarcity of measurements, there is inherently ver ...
The increasing interest in using statistical extreme value theory to analyse environmental data is mainly driven by the large impact extreme events can have. A difficulty with spatial data is that most existing inference methods for asymptotically justifie ...
Humans are comparison machines: comparing and choosing an item among a set of alternatives (such as objects or concepts) is arguably one of the most natural ways for us to express our preferences and opinions. In many applications, the analysis of data con ...
We develop approximate inference and learning methods for facilitating the use of probabilistic modeling techniques motivated by applications in two different areas. First, we consider the ill-posed inverse problem of recovering an image from an underdeter ...
Inspired by applications in sports where the skill of players or teams competing against each other varies over time, we propose a probabilistic model of pairwise-comparison outcomes that can capture a wide range of time dynamics. We achieve this by replac ...
In this work, we formulate the fixed-length distribution matching as a Bayesian inference problem. Our proposed solution is inspired from the compressed sensing paradigm and the sparse superposition (SS) codes. First, we introduce sparsity in the binary so ...
We consider the inference problem for parameters in stochastic differential equation models from discrete time observations (e.g. experimental or simulation data). Specifically, we study the case where one does not have access to observations of the model ...
In recent years important progress has been achieved towards proving the validity of the replica predictions for the (asymptotic) mutual information (or free energy) in Bayesian inference problems. The proof techniques that have emerged appear to be quite ...
A novel approach is presented for constructing polynomial chaos representations of scalar quantities of interest (QoI) that extends previously developed methods for adaptation in Homogeneous Chaos spaces. In this work, we develop a Bayesian formulation of ...
We study the problem of drift estimation for two-scale continuous time series. We set ourselves in the framework of overdamped Langevin equations, for which a single-scale surrogate homogenized equation exists. In this setting, estimating the drift coeffic ...