Atomic commitIn the field of computer science, an atomic commit is an operation that applies a set of distinct changes as a single operation. If the changes are applied, then the atomic commit is said to have succeeded. If there is a failure before the atomic commit can be completed, then all of the changes completed in the atomic commit are reversed. This ensures that the system is always left in a consistent state. The other key property of isolation comes from their nature as atomic operations.
Three-phase commit protocolIn computer networking and databases, the three-phase commit protocol (3PC) is a distributed algorithm which lets all nodes in a distributed system agree to commit a transaction. It is a more failure-resilient refinement of the two-phase commit protocol (2PC). A two-phase commit protocol cannot dependably recover from a failure of both the coordinator and a cohort member during the Commit phase. If only the coordinator had failed, and no cohort members had received a commit message, it could safely be inferred that no commit had happened.
Computational complexity theoryIn theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used.
Knapsack problemThe knapsack problem is the following problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine which items to include in the collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items.
Commitment orderingCommitment ordering (CO) is a class of interoperable serializability techniques in concurrency control of databases, transaction processing, and related applications. It allows optimistic (non-blocking) implementations. With the proliferation of multi-core processors, CO has also been increasingly utilized in concurrent programming, transactional memory, and software transactional memory (STM) to achieve serializability optimistically. CO is also the name of the resulting transaction schedule (history) property, defined in 1988 with the name dynamic atomicity.
Decision problemIn computability theory and computational complexity theory, a decision problem is a computational problem that can be posed as a yes–no question of the input values. An example of a decision problem is deciding by means of an algorithm whether a given natural number is prime. Another is the problem "given two numbers x and y, does x evenly divide y?". The answer is either 'yes' or 'no' depending upon the values of x and y. A method for solving a decision problem, given in the form of an algorithm, is called a decision procedure for that problem.
Travelling salesman problemThe travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in theoretical computer science and operations research. The travelling purchaser problem and the vehicle routing problem are both generalizations of TSP.
Optimization problemIn mathematics, computer science and economics, an optimization problem is the problem of finding the best solution from all feasible solutions. Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete: An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set.