Pronoun Translation and Prediction with or without Coreference Links
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Machine-readable semantic knowledge in the form of taxonomies (i.e., a collection of is-a edges) has proved to be beneficial in an array of NLP tasks including inference, textual entailment, question answering and information extraction. Such widespread ut ...
Recognition and identification of real-world entities is at the core of virtually any text mining application. As a matter of fact, referential units such as names of persons, locations and organizations underlie the semantics of texts and guide their inte ...
In this paper, we evaluate the results of using inter and intra attention mechanisms from two architectures, a Deep Attention Long Short-Term Memory-Network (LSTM-N) (Cheng et al., 2016) and a Decomposable Attention model (Parikh et al., 2016), for anaphor ...
The current information landscape is characterised by a vast amount of relatively semantically homogeneous, when observed in isolation, data silos that are, however, drastically semantically fragmented when considered as a whole. Within each data silo, inf ...
In recent years there have been multiple successful attempts tackling document processing problems separately by designing task specific hand-tuned strategies. We argue that the diversity of historical document processing tasks prohibits to solve them one ...
The presentation reports on the on-going work to automatically process heterogeneous historical documents. After a quick overview of the general processing pipeline, a few examples are more comprehensively described. The recent progress in making large col ...
Different senses of source words must often be rendered by different words in the target language when performing machine translation (MT). Selecting the correct translation of polysemous words can be done based on the contexts of use. However, state-of-th ...
This paper reports on an approach and experiments to automatically build a cross-lingual multi-word entity resource. Starting from a collection of millions of acronym/expansion pairs for 22 languages where expansion variants were grouped into monolingual c ...
European Language Resources Association (ELRA)2016
The curation of neuroscience entities is crucial to ongoing efforts in neuroinformatics and computational neuroscience, such as those being deployed in the context of continuing large-scale brain modelling projects. However, manually sifting through thousa ...
The paper describes the submission of the team "We used bert!" to the shared task Gendered Pronoun Resolution (Pair pronouns to their correct entities). Our final submission model based on the fine-tuned BERT (Bidirectional Encoder Representations from Tra ...