Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Differential privacy (DP) has become widely accepted as a rigorous definition of data privacy, with stronger privacy guarantees than traditional statistical methods. However, recent studies have shown that for reasonable privacy budgets, differential privacy significantly affects the expected utility. Many alternative privacy notions which aim at relaxing DP have since been proposed, with the hope of providing a better tradeoff between privacy and utility. At CCS’13, Li et al. introduced the membership privacy framework, wherein they aim at protecting against set membership disclosure by adversaries whose prior knowledge is captured by a family of probability distributions. In the context of this framework, we investigate a relaxation of DP, by considering prior distributions that capture more reasonable amounts of background knowledge. We show that for different privacy budgets, DP can be used to achieve membership privacy for various adversarial settings, thus leading to an interesting tradeoff between privacy guarantees and utility. We re-evaluate methods for releasing differentially private chi^2-statistics in genome-wide association studies and show that we can achieve a higher utility than in previous works, while still guaranteeing membership privacy in a relevant adversarial setting.
Boi Faltings, Sujit Prakash Gujar, Aleksei Triastcyn, Sankarshan Damle