Radio spectrumThe radio spectrum is the part of the electromagnetic spectrum with frequencies from 3 Hz to 3,000 GHz (3 THz). Electromagnetic waves in this frequency range, called radio waves, are widely used in modern technology, particularly in telecommunication. To prevent interference between different users, the generation and transmission of radio waves is strictly regulated by national laws, coordinated by an international body, the International Telecommunication Union (ITU).
Orthogonal frequency-division multiplexingIn telecommunications, orthogonal frequency-division multiplexing (OFDM) is a type of digital transmission used in digital modulation for encoding digital (binary) data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G/5G mobile communications. OFDM is a frequency-division multiplexing (FDM) scheme that was introduced by Robert W.
Li-FiLi-Fi (also written as LiFi) is a wireless communication technology which utilizes light to transmit data and position between devices. The term was first introduced by Harald Haas during a 2011 TEDGlobal talk in Edinburgh. Li-Fi is a light communication system that is capable of transmitting data at high speeds over the visible light, ultraviolet, and infrared spectrums. In its present state, only LED lamps can be used for the transmission of data in visible light.
Packet radioIn digital radio, packet radio is the application of packet switching techniques to digital radio communications. Packet radio uses a packet switching protocol as opposed to circuit switching or message switching protocols to transmit digital data via a radio communication link. Packet radio is frequently used by amateur radio operators. The AX.25 (Amateur X.25) protocol was derived from the X.25 data link layer protocol and adapted for amateur radio use. Every AX.
Ethernet frameIn computer networking, an Ethernet frame is a data link layer protocol data unit and uses the underlying Ethernet physical layer transport mechanisms. In other words, a data unit on an Ethernet link transports an Ethernet frame as its payload. An Ethernet frame is preceded by a preamble and start frame delimiter (SFD), which are both part of the Ethernet packet at the physical layer. Each Ethernet frame starts with an Ethernet header, which contains destination and source MAC addresses as its first two fields.
Simple extensionIn field theory, a simple extension is a field extension which is generated by the adjunction of a single element, called a primitive element. Simple extensions are well understood and can be completely classified. The primitive element theorem provides a characterization of the finite simple extensions. A field extension L/K is called a simple extension if there exists an element θ in L with This means that every element of L can be expressed as a rational fraction in θ, with coefficients in K; that is, it is produced from θ and elements of K by the field operations +, −, •, / .
Medium access controlIn IEEE 802 LAN/MAN standards, the medium access control (MAC, also called media access control) sublayer is the layer that controls the hardware responsible for interaction with the wired, optical or wireless transmission medium. The MAC sublayer and the logical link control (LLC) sublayer together make up the data link layer. The LLC provides flow control and multiplexing for the logical link (i.e. EtherType, 802.1Q VLAN tag etc), while the MAC provides flow control and multiplexing for the transmission medium.
Spectrum analyzerA spectrum analyzer measures the magnitude of an input signal versus frequency within the full frequency range of the instrument. The primary use is to measure the power of the spectrum of known and unknown signals. The input signal that most common spectrum analyzers measure is electrical; however, spectral compositions of other signals, such as acoustic pressure waves and optical light waves, can be considered through the use of an appropriate transducer.
Carrier waveIn telecommunications, a carrier wave, carrier signal, or just carrier, is a waveform (usually sinusoidal) that is modulated (modified) with an information-bearing signal (called the message signal or modulation signal) for the purpose of conveying information. This carrier wave usually has a much higher frequency than the message signal does. This is because it is impractical to transmit signals with low frequencies.
SpectrumA spectrum (: spectra or spectrums) is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors in visible light after passing through a prism. As scientific understanding of light advanced, it came to apply to the entire electromagnetic spectrum. It thereby became a mapping of a range of magnitudes (wavelengths) to a range of qualities, which are the perceived "colors of the rainbow" and other properties which correspond to wavelengths that lie outside of the visible light spectrum.