In computer networking, an Ethernet frame is a data link layer protocol data unit and uses the underlying Ethernet physical layer transport mechanisms. In other words, a data unit on an Ethernet link transports an Ethernet frame as its payload.
An Ethernet frame is preceded by a preamble and start frame delimiter (SFD), which are both part of the Ethernet packet at the physical layer. Each Ethernet frame starts with an Ethernet header, which contains destination and source MAC addresses as its first two fields. The middle section of the frame is payload data including any headers for other protocols (for example, Internet Protocol) carried in the frame. The frame ends with a frame check sequence (FCS), which is a 32-bit cyclic redundancy check used to detect any in-transit corruption of data.
Physical Coding Sublayer
A data packet on the wire and the frame as its payload consist of binary data. Ethernet transmits data with the most-significant octet (byte) first; within each octet, however, the least-significant bit is transmitted first.
The internal structure of an Ethernet frame is specified in IEEE 802.3. The table below shows the complete Ethernet packet and the frame inside, as transmitted, for the payload size up to the MTU of 1500 octets. Some implementations of Gigabit Ethernet and other higher-speed variants of Ethernet support larger frames, known as jumbo frames.
The optional 802.1Q tag consumes additional space in the frame. Field sizes for this option are shown in brackets in the table above. IEEE 802.1ad (Q-in-Q) allows for multiple tags in each frame. This option is not illustrated here.
Syncword
An Ethernet packet starts with a seven-octet (56-bit) preamble and one-octet (8-bit) start frame delimiter (SFD). The preamble bit values alternate 1 and 0, allowing receivers to synchronize their clock at the bit-level with the transmitter. The preamble is followed by the SFD which ends with a 1 instead of 0, to break the bit pattern of the preamble and signal the start of the actual frame.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours permet de comprendre le fonctionnement, déterminer les efforts et de dimensionner les structures en treillis, en poutre, en dalle et en cadre. Le cours se base sur la résolution des efforts p
A house is the simple topic of this studio. A matter of simple complexity. Starting from elements of architecture and images of life, defining a fragment; constructing a chair; finally arriving at a h
A house is the simple topic of this studio. A matter of simple complexity. Starting from elements of architecture and images of life, defining a fragment; constructing a chair; finally arriving at a h
In computer networking, the interpacket gap (IPG), also known as interframe spacing, or interframe gap (IFG), is a pause which may be required between network packets or network frames. Depending on the physical layer protocol or encoding used, the pause may be necessary to allow for receiver clock recovery, permitting the receiver to prepare for another packet (e.g. powering up from a low-power state) or another purpose. It may be considered as a specific case of a guard interval.
A frame check sequence (FCS) is an error-detecting code added to a frame in a communication protocol. Frames are used to send payload data from a source to a destination. All frames and the bits, bytes, and fields contained within them, are susceptible to errors from a variety of sources. The FCS field contains a number that is calculated by the source node based on the data in the frame. This number is added to the end of a frame that is sent.
EtherType is a two-octet field in an Ethernet frame. It is used to indicate which protocol is encapsulated in the payload of the frame and is used at the receiving end by the data link layer to determine how the payload is processed. The same field is also used to indicate the size of some Ethernet frames. EtherType is also used as the basis of 802.1Q VLAN tagging, encapsulating packets from VLANs for transmission multiplexed with other VLAN traffic over an Ethernet trunk.
Concepts of type and typology are not specific to architecture. Rather they represent an interdisciplinary approach to ordering knowledge and gaining insight. In the field of architecture, the study of types and typology offers a didactic perspective that ...
EPFL Press2022
, ,
A smart wearable (SW) for collecting data on an integrity of a joint of a wearer, the wearable including a first frame (1) configured to be attached in proximity of the joint of the wearer, the frame (1) including an elastic sensor frame (3) having an open ...
2023
, , ,
Flexure pivot based system (1) being one of: a force sensor, a force limiting device arranged to exert a predetermined threshold force, a torque limiting device arranged to exert a predetermined threshold torque, a programmable mechanical memory, or an acc ...