Publication

On the Approximation Power of Splines: Orthogonal Versus Hexagonal Lattices

Abstract

Recently, we have proposed a novel family of bivariate, non-separable splines. These splines, called "hexsplines" have been designed to deal with hexagonally sampled data. Incorporating the shape of the Voronoi cell of a hexagonal lattice, they preserve the twelve-fold symmetry of the hexagon tiling cell. Similar to B-splines, we can use them to provide a link between the discrete and the continuous domain, which is required for many fundamental operations such as interpolation and resampling. The question we answer in this paper is "How well do the hex-splines approximate a given function in the continuous domain?" and more specifically "How do they compare to separable B-splines deployed on a lattice with the same sampling density?"

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.