Publication

Fractal Modelling and Analysis of Flow-Field Images

Abstract

We introduce stochastic models for flow fields with parameters that dictate the scale-dependent (self-similar) character of the field and control the balance between its rotational vs compressive behaviour. The development of our models is motivated by the availability of imaging modalities that measure flow vector fields (flow-sensitive MRI and Doppler ultrasound). To study such data, we formulate estimators of the model parameters, and use them to quantify the Hurst exponent and directional properties of synthetic and real-world flow fields (measured by means of phase-contrast MRI) in 3D.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (36)
Potential flow
In fluid dynamics, potential flow (or ideal flow) describes the velocity field as the gradient of a scalar function: the velocity potential. As a result, a potential flow is characterized by an irrotational velocity field, which is a valid approximation for several applications. The irrotationality of a potential flow is due to the curl of the gradient of a scalar always being equal to zero. In the case of an incompressible flow the velocity potential satisfies Laplace's equation, and potential theory is applicable.
Vector field
In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space . A vector field on a plane can be visualized as a collection of arrows with given magnitudes and directions, each attached to a point on the plane. Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout three dimensional space, such as the wind, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from one point to another point.
Fractal
In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illustrated in successive magnifications of the Mandelbrot set. This exhibition of similar patterns at increasingly smaller scales is called self-similarity, also known as expanding symmetry or unfolding symmetry; if this replication is exactly the same at every scale, as in the Menger sponge, the shape is called affine self-similar.
Show more
Related publications (41)

Single-cell biology: what does the future hold?

Bart Deplancke

In this Editorial, our Chief Editor and members of our Advisory Editorial Board discuss recent breakthroughs, current challenges, and emerging opportunities in single-cell biology and share their vision of "where the field is headed." ...
WILEY2023

Unsupervised Electrofacies Clustering Based on Parameterization of Petrophysical Properties: A Dynamic Programming Approach

François Fleuret, Karthigan Sinnathamby

Electrofacies using well logs play a vital role in reservoir characterization. Often, they are sorted into clusters according to the self-similarity of input logs and do not capture the known underlying physical process. In this paper, we propose an unsupe ...
SOC PETROPHYSICISTS & WELL LOG ANALYSTS-SPWLA2023

Fractal analysis in the quantification of medical imaging associated with multiple sclerosis pathology

Maria-Alexandra Paun

Backgrounds: Multiple sclerosis (MS) is an inveterate phlogistic situation characterized by focal and vaguely diffusive de-myelination and neurodegeneration, in the sphere of central nervous system (CNS). The brain's chronic inflammatory reaction includes ...
IMR PRESS2022
Show more
Related MOOCs (15)
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.