**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Vector field

Summary

In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space \mathbb{R}^n. A vector field on a plane can be visualized as a collection of arrows with given magnitudes and directions, each attached to a point on the plane. Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout three dimensional space, such as the wind, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from one point to another point.
The elements of differential and integral calculus extend naturally to vector fields. When a vector field represents force, the line integral of a vector field represents the work done by a force moving along a path, and under this interpretation conservation of energy is exhibited as a special case of the fundamental theorem of calculus. Vector fields can usefully be th

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people (3)

Related concepts (131)

Differentiable manifold

In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be desc

Manifold

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or n-manifold for sho

Gradient

In vector calculus, the gradient of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) \nabla f whose value at a

Related publications (44)

Loading

Loading

Loading

Related courses (62)

BIO-341: Dynamical systems in biology

Ce cours introduit les systèmes dynamiques pour modéliser des réseaux biologiques simples. L'analyse qualitative de modèles dynamiques non-linéaires est développée de pair avec des simulations numériques. L'accent est mis sur les exemples biologiques.

MATH-106(b): Analysis II

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs
variables.

PHYS-201(d): General physics: electromagnetism

The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.

Related units (3)

Related lectures (183)

In this thesis, we study two distinct problems.
The first problem consists of studying the linear system of partial differential equations which consists of taking a k-form, and applying the exterior derivative 'd' to it and add the wedge product with a 1-form 'a'. The study of this differential operator is linked to the study of the multiplication by a two form, that is the system of linear equations where we take a k-form and apply the exterior wedge product by 'da', the exterior derivative of 'a'. We establish links between the partial differential equation and the linear system.
The second problem is a generalization of the symmetric gradient and the curl equation. The equation of a symmetric gradient consists of taking a vector field, apply the gradient and then add the transpose of the gradient, whereas in the curl equation we subtract the transpose of the gradient. Both can be seen as an equation of the form A * grad u + (grad u)t * A, where A is a symmetric matrix for the case of the symmetric gradient and skew symmetric for the curl equation. We generalize to the case where A verifies no symmetry assumption and more significantly add a Dirichlet condition on the boundary.

The Monge problem (Monge 1781; Taton 1951), as reformulated by Kantorovich (2006a, 2006b) is that of the transportation at a minimum "cost" of a given mass distribution from an initial to a final position during a given time interval. It is an optimal transport problem (Villani, 2003, sects. 1, 2). Following the fluid mechanical solution provided by Benamou and Brenier (2000) for quadratic cost functions (Villani, 2003, sects. 5.4, 8.1), Lagrangian formulations are needed to solve this boundary value problem in time and to determine the Actions as time integral of Lagrangians that are measures of the "cost" of the transportations (Benamou and Brenier, 2000, prop. 1.1). Given canonical Hamilltonians of perfect and self-interacting systems expressed in function of mass densities and velocity potentials, four versions of explicit constructions of Lagrangians, with their corresponding generalized coordinates, are proposed: elimination of the velocity potentials as a function of the densities and their time derivatives by inversion of the continuity equations; elimination of the gradient of the velocity potentials from the continuity equations thanks to the introduction of vector fields such that their divergences give the mass densities; generalization in nD of Gelfand mass coordinate (1963) by the introduction of n-dimensional vector fields such that the determinant of their Jacobian matrices give the mass densities; and, last, introduction of the Lagrangian coordinates that describe the characteristics of the different models and are parametrized by the former auxiliary vector fields. Using this version, weak solutions of several models of Coulombian and Newtonian systems known in Plasma Physics and in Cosmology, with spherically symmetric boundary densities, are given as illustrations.

2010In the class of Sobolev vector fields in R-n of bounded divergence, for which the theory of DiPerna and Lions provides a well defined notion of flow, we characterize the vector fields whose flow commutes in terms of the Lie bracket and of a regularity condition on the flows themselves. This extends a classical result of Frobenius in the smooth setting. (C) 2021 Elsevier Masson SAS. All rights reserved.