Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The connection between derivative operators and wavelets is well known. Here we generalize the concept by constructing multiresolution approximations and wavelet basis functions that act like Fourier multiplier operators. This construction follows from a stochastic model: signals are tempered distributions such that the application of a whitening (differential) operator results in a realization of a sparse white noise. Using wavelets constructed from these operators, the sparsity of the white noise can be inherited by the wavelet coefficients. In this paper, we specify such wavelets in full generality and determine their properties in terms of the underlying operator.
Yves-Marie François Ducimetière
Fabio Nobile, Simone Brugiapaglia