Publication

Statistics of Wavelet Coefficients for Sparse Self-Similar Images

Abstract

We study the statistics of wavelet coefficients of non-Gaussian images, focusing mainly on the behaviour at coarse scales. We assume that an image can be whitened by a fractional Laplacian operator, which is consistent with an ωγ∥ω∥ ^{ -\gamma } spectral decay. In other words, we model images as sparse and self-similar stochastic processes within the framework of generalised innovation models. We show that the wavelet coefficients at coarse scales are asymptotically Gaussian even if the prior model for fine scales is sparse. We further refine our analysis by deriving the theoretical evolution of the cumulants of wavelet coefficients across scales. Especially, the evolution of the kurtosis supplies a theoretical prediction for the Gaussianity level at each scale. Finally, we provide simulations and experiments that support our theoretical predictions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.