Energy systemAn energy system is a system primarily designed to supply energy-services to end-users. The intent behind energy systems is to minimise energy losses to a negligible level, as well as to ensure the efficient use of energy. The IPCC Fifth Assessment Report defines an energy system as "all components related to the production, conversion, delivery, and use of energy". The first two definitions allow for demand-side measures, including daylighting, retrofitted building insulation, and passive solar building design, as well as socio-economic factors, such as aspects of energy demand management and remote work, while the third does not.
EnergyIn physics, energy () is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat and light. Energy is a conserved quantity—the law of conservation of energy states that energy can be converted in form, but not created or destroyed. The unit of measurement for energy in the International System of Units (SI) is the joule (J).
OverclockingIn computing, overclocking is the practice of increasing the clock rate of a computer to exceed that certified by the manufacturer. Commonly, operating voltage is also increased to maintain a component's operational stability at accelerated speeds. Semiconductor devices operated at higher frequencies and voltages increase power consumption and heat. An overclocked device may be unreliable or fail completely if the additional heat load is not removed or power delivery components cannot meet increased power demands.
Computer fanA computer fan is any fan inside, or attached to, a computer case used for active cooling. Fans are used to draw cooler air into the case from the outside, expel warm air from inside and move air across a heat sink to cool a particular component. Both axial and sometimes centrifugal (blower/squirrel-cage) fans are used in computers. Computer fans commonly come in standard sizes, such as 92 mm, 120 mm (most common), 140 mm, and even 200220 mm. Computer fans are powered and controlled using 3-pin or 4-pin fan connectors.
Energy independenceEnergy independence is independence or autarky regarding energy resources, energy supply and/or energy generation by the energy industry. Energy dependence, in general, refers to mankind's general dependence on either primary or secondary energy for energy consumption (fuel, transport, automation, etc.). In a narrower sense, it may describe the dependence of one country on energy resources from another country. Energy dependency shows the extent to which an economy relies upon imports in order to meet its energy needs.
Enthalpy of vaporizationIn thermodynamics, the enthalpy of vaporization (symbol ∆Hvap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy (enthalpy) that must be added to a liquid substance to transform a quantity of that substance into a gas. The enthalpy of vaporization is a function of the pressure at which the transformation (vaporization or evaporation) takes place. The enthalpy of vaporization is often quoted for the normal boiling temperature of the substance.
ASHRAEThe American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE ˈæʃreɪ ) is an American professional association seeking to advance heating, ventilation, air conditioning and refrigeration (HVAC&R) systems design and construction. ASHRAE has over 50,000 members in more than 130 countries worldwide. ASHRAE's members are composed of building services engineers, architects, mechanical contractors, building owners, equipment manufacturers' employees, and others concerned with the design and construction of HVAC&R systems in buildings.
Enthalpy of fusionIn thermodynamics, the enthalpy of fusion of a substance, also known as (latent) heat of fusion, is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure. It is the amount of energy required to convert one mole of solid into liquid. For example, when melting 1 kg of ice (at 0 °C under a ), 333.55 kJ of energy is absorbed with no temperature change.