Thermodynamic Aspects of Homogeneous Nucleation Enhanced by Icosahedral Short Range Order in Liquid Fcc-Type Alloys
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Oxide Dispersed Strengthened (ODS) ferritic stainless steels present well-known fine grains microstructures where dislocation movement is hindered by a dense precipitation of nano-oxides particles. Previous research, on the thermomechanical behavior at hig ...
The present contribution reviews the recent progress related to the influence of Icosahedral Short-Range Order (ISRO) and icosahedral Quasicrystals (i-QC) formation on the solidification of fcc alloys through minor solute element additions. From intensive ...
This is the first account of the history of modelling dendritic and cellular solidification. While Part I reviewed the progress up to the year 2000 [Kurz W, Fisher DJ, Trivedi R. Progress in modelling solidification microstructures in metals and alloys: de ...
To reveal the operating mechanisms of plastic deformation in an FCC high-entropy alloy, the activation volumes in CrMnFeCoNi have been measured as a function of plastic strain and temperature between 77 K and 423 K using repeated load relaxation experiment ...
The mechanical properties due to solid solution strengthening are explored within the single phase face-centered cubic (fcc) domain of the Co-Cr-Fe-Mn Ni high entropy alloy (HEA) system. This is achieved by combining an efficient and reproducible metallurg ...
Twinning in fcc High Entropy Alloys (HEAs) has been implicated as a possible mechanism for hardening that enables enhanced ductility. Here, a theory for the twinning stress is developed analogous to recent theories for yield stress. Specifically, the stres ...
The mechanical strength of metals depends on their resistance against various microscopic
deformation processes. In ductile metals, the most important process is shearing of the crystal
lattice by dislocations. One of the fundamental aspects of dislocation ...
Age hardening induced by the formation of (semi)-coherent precipitate phases is crucial for the processing and final properties of the widely used Al-6000 alloys despite the early stages of precipitation are still far from being fully understood. This cruc ...
The plastic deformation in hcp metals is complex, with the associated dislocation core structures and properties not well understood on many slip planes in most hcp metals. A first step in establishing the dislocation properties is to examine the stable st ...
Hydrogen atoms have a wide variety of effects on the mechanical performance of metals, and the underlying mechanisms associated with effects on plastic flow and embrittlement remain to be discovered or validated. Here, the reduction in the plastic flow str ...