Surface-Enhanced Hyper-Raman Scattering: A New Road to the Observation of Low Energy Molecular Vibrations
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Metamaterial-based perfect absorbers utilize intrinsic loss, with the aid of appropriate structural design, to achieve near unity absorption at a certain wavelength. For most of the reported absorbers, the absorption occurs only at a single wavelength wher ...
Surface plasmons are able to generate extremely strong and confined optical fields at a deep-subwavelength scale, far beyond the diffraction limit, and now play a central role in nanosciences. A proper combination of plasmonic nanostructures can support Fa ...
Differential pulse-width-pair BOTDA technique is combined with bi-directional Raman amplification and Simplex coding to achieve sub-meter spatial resolution over very long sensing distances. Numerical simulations are used to optimize the power levels of th ...
There has been a very strong development of the sensors based on surface plasmon resonance during the last thirty years, mostly for biological and biomedical applications. If the first experiments in this field were carried out at the beginning of the 20t ...
Surface enhanced Raman scattering (SERS) "hot spots" are the regions where the electromagnetic field is significantly enhanced, resulting in much greater SERS activity than other areas. Therefore, the engineering and characterization of "hot spots" have at ...
The enhancement of excitation and reemission of molecules in dose proximity to plasmonic nanostuctures is studied with special focus on the comparison between idealized and realistically shaped nonostructures. Numerical experiments show that for certain ap ...
In this paper we demonstrate distributed Raman temperature sensing (RDTS) in a loop scheme employing anti-Stokes light intensity only. Using a single-channel receiver and anti-Stokes traces measured in loop configuration, we implement RDTS with inherent co ...
With the development of nanotechnology, many new optical phenomena in nanoscale have been demonstrated. Through the coupling of optical waves and collective oscillations of free electrons in metallic nanostructures, surface plasmon polaritons can be excite ...
The present review on light emission stimulated by electrons tunneling inelastically through a junction formed by a sample and a tip of a scanning tunneling microscope (STM) focusses on the most relevant results obtained for a variety of systems, including ...
We study the relaxation dynamics of a trapped polariton gas in the nonlinear regime. We excite the three lowest energy states of the system and observe the time evolution of the polariton density in the momentum space. At a low excitation power, the dynami ...