Publication

Effect of carbon surface functional groups on the synthesis of Ru/C catalysts for supercritical water gasification

Abstract

A carbon support was treated with HNO3 to create surface functional groups (e.g. -COOH, -OH), which were then characterized by TGA, TPD, CNS elemental analysis, and Boehm titration. HNO3 modified the carbon surface properties by adding a high amount of carboxylic groups, improved the thermal stability of the carbon support, and reduced ca. 50% of the ash. The thermal pre-treatment (723 K under He) following the HNO3 pre-treatment successfully removed the carboxylic groups. 4% Ru/C catalysts were synthesized using the surface-modified carbon supports and characterized by H-2-TPR, CO pulse chemisorption, N-2-physisorption and HAADF-STEM. The Ru dispersion was increased in the presence of the carboxylic groups. Catalytic supercritical water gasification (CSCWG) of 10 wt.% isopropanol over the 4% Ru/C catalysts was carried out at 723 K and 30 MPa for 50 hours to assess the performance of the catalysts. It was found that the Ru/C catalyst prepared involving a pre-treatment with HNO3 did not exhibit a higher catalytic activity than the catalyst whose carbon support was not pre-treated with HNO3. Hence, the activity and the selectivity during CSCWG were not influenced by the pre-treatment of the catalyst support with HNO3.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.