The negative triangularity tokamak: stability limits and prospects as a fusion energy system
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In order to cope with the decarbonization challenge faced by many countries, fusion is one of the few alternatives to fossil fuels for the production of electricity. Two devices invented in the middle of the previous century have emerged as the most promis ...
This thesis delves into the potential of magnetic fusion energy, and in particular focuses on the stellarator concept. Stellarators use external coils to produce 3-dimensional (3D) magnetic fields that confine a thermonuclear plasma in a topologically toro ...
Turbulence driven by small-scale instabilities results in strong heat and particle transport, which significantly shortens the confinement time and prevents the formation of a self-sustained plasma reaction in magnetic confinement devices. Control and poss ...
Tokamak devices aim to magnetically confine a hydrogen plasma at sufficiently high pressure to achieve net energy production from nuclear fusion of light isotopes. Predictive modeling and optimization is crucial for reliable operation of tokamak reactors, ...
While it is important to design stellarators with high magnetohydrodynamic stability β-limit, it is also crucial to ensure that good magnetic surfaces exist in a large range of β values. As β increases, pressure-driven currents perturb the vacuum magnetic ...
A key challenge for the development of fusion reactors based on magnetic confinement, such as tokamaks and stellarators, is the control of the turbulent processes. The most prominent feature of turbulence in the Scrape-Off Layer (SOL), the volume between t ...
Two-fluid, three-dimensional, flux-driven, global, electromagnetic turbulence simulations carried out by using the GBS (Global Braginskii Solver) code are used to identify the main parameters controlling turbulent transport in the tokamak boundary and to d ...
This thesis presents advancements in the understanding of the plasma conditions leading to the excitation and saturation of the Edge Harmonic Oscillations (EHOs) observed during QH-mode operation in tokamak plasmas. Such operations represent a safer altern ...
The pre-thermal quench (pre-TQ) dynamics of a pure deuterium ( D 2 ) shattered pellet injection (SPI) into a 3 MA / 7 MJ JET H-mode plasma is studied via 3D non-linear MHD modelling with the JOREK code. The interpretative modelling captures the overall evo ...
In this work, we study the impact of aspect ratio A = R 0 / r (the ratio of major radius R 0 to minor radius r) on the confinement benefits of negative triangularity (NT) plasma shaping. We use high-fidelity flux tube gyrokinetic GENE simulations and consi ...