**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Scalable Convex Methods for Phase Retrieval

Abstract

This paper describes scalable convex optimization methods for phase retrieval. The main characteristics of these methods are the cheap per-iteration complexity and the low-memory footprint. With a variant of the original PhaseLift formulation, we first illustrate how to leverage the scalable Frank-Wolfe (FW) method (also known as the conditional gradient algorithm), which requires a tuning parameter. We demonstrate that we can estimate the tuning parameter of the FW algorithm directly from the measurements, with rigorous theoretical guarantees. We then illustrate numerically that recent advances in universal primal-dual convex optimization methods offer significant scalability improvements over the FW method, by recovering full HD resolution color images from their quadratic measurements.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (7)

Related MOOCs (1)

Related publications (32)

Iterative method

In computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the n-th approximation is derived from the previous ones. A specific implementation with termination criteria for a given iterative method like gradient descent, hill climbing, Newton's method, or quasi-Newton methods like BFGS, is an algorithm of the iterative method.

Multigrid method

In numerical analysis, a multigrid method (MG method) is an algorithm for solving differential equations using a hierarchy of discretizations. They are an example of a class of techniques called multiresolution methods, very useful in problems exhibiting multiple scales of behavior. For example, many basic relaxation methods exhibit different rates of convergence for short- and long-wavelength components, suggesting these different scales be treated differently, as in a Fourier analysis approach to multigrid.

Convex optimization

Convex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization problems admit polynomial-time algorithms, whereas mathematical optimization is in general NP-hard.

Introduction to optimization on smooth manifolds: first order methods

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Giancarlo Ferrari Trecate, Maryam Kamgarpour, Yuning Jiang, Baiwei Guo

We address black-box convex optimization problems, where the objective and constraint functions are not explicitly known but can be sampled within the feasible set. The challenge is thus to generate a sequence of feasible points converging towards an optim ...

2023Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...

Volkan Cevher, Maria-Luiza Vladarean

We consider the problem of finding a saddle point for the convex-concave objective $\min_x \max_y f(x) + \langle Ax, y\rangle - g^*(y)$, where $f$ is a convex function with locally Lipschitz gradient and $g$ is convex and possibly non-smooth. We propose an ...

2021