Publication

Scalable Convex Methods for Phase Retrieval

Volkan Cevher, Alp Yurtsever, Ya-Ping Hsieh
2015
Article de conférence
Résumé

This paper describes scalable convex optimization methods for phase retrieval. The main characteristics of these methods are the cheap per-iteration complexity and the low-memory footprint. With a variant of the original PhaseLift formulation, we first illustrate how to leverage the scalable Frank-Wolfe (FW) method (also known as the conditional gradient algorithm), which requires a tuning parameter. We demonstrate that we can estimate the tuning parameter of the FW algorithm directly from the measurements, with rigorous theoretical guarantees. We then illustrate numerically that recent advances in universal primal-dual convex optimization methods offer significant scalability improvements over the FW method, by recovering full HD resolution color images from their quadratic measurements.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.