Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The exciton transport is studied in high quality ZnO microwires using time resolved cathodoluminescence. Owing to the available picosecond temporal and nanometer spatial resolution, a direct estimation of the exciton average speed has been measured. When raising the temperature, a strong decrease of the effective exciton mobility (hopping speed of donor-bound excitons) has been observed in the absence of any remarkable change in the effective lifetime of excitons. Additionally, the exciton hopping speed was observed to be independent of the strain gradient value, revealing the hopping nature of exciton movement. These experimental results are in good agreement with the behavior predicted for impurity-bound excitons in our previously published theoretical model based on Monte-Carlo simulations, suggesting the hopping process as the main transport mechanism of impurity-bound excitons at low temperatures.
Philip Johannes Walter Moll, Maja Deborah Bachmann, Matthias Carsten Putzke, Chunyu Guo, Maarten Ruud van Delft, Joshua Alan Wolfe Straquadine
Philip Johannes Walter Moll, Matthias Carsten Putzke, Xiangwei Huang, Jonas De Jesus Diaz Gomez, Amelia Emily-Kay Estry