Concept

Organic solar cell

Summary
An organic solar cell (OSC) or plastic solar cell is a type of photovoltaic that uses organic electronics, a branch of electronics that deals with conductive organic polymers or small organic molecules, for light absorption and charge transport to produce electricity from sunlight by the photovoltaic effect. Most organic photovoltaic cells are polymer solar cells. The molecules used in organic solar cells are solution-processable at high throughput and are cheap, resulting in low production costs to fabricate a large volume. Combined with the flexibility of organic molecules, organic solar cells are potentially cost-effective for photovoltaic applications. Molecular engineering (e.g., changing the length and functional group of polymers) can change the band gap, allowing for electronic tunability. The optical absorption coefficient of organic molecules is high, so a large amount of light can be absorbed with a small amount of materials, usually on the order of h
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (100)

Loading

Loading

NIR sensitive organic dyes for tandem solar cells and transparent photodiodes

Hui Zhang

Due to advantages such as mechanical flexibility, light weight and the prospect to use low-cost roll-to-roll manufacturing processes, organic semiconductors have been widely investi-gated in many application areas as alternatives for their inorganic counterpart. In organic sem-iconductors, the rather weak Van der Waals interactions holding together the molecular build-ing blocks result in narrow absorption bands which endow organic electronics with important advantages for the development of smart functionalities. Transparent organic electronics (TOEs), for example, incorporate devices through which visible light is transmitted. Among other semiconducting devices, it is actually possible to construct sensors and photovoltaic de-vices that solely use ultraviolet (UV) and near infrared (NIR) light to produce electrical energy or signal. TOEs have been proposed for easy integration with other electronic devices. Among the different molecular materials, cyanine dyes stand out by sharp, intense absorption bands exhibiting the highest molar extinction coefficients. The absorption peak can be easily shifted into the NIR wavelength region by increasing the length of the conjugated polymethine chain. For example, NIR light absorbing heptamethine cyanine dyes (Cy7) are promising candidates as transparent and colorless photoactive film materials. In this thesis work, highly efficient TOE devices such as transparent solar cells and transparent photodetectors using NIR absorbing cyanine dyes as photosensitive materials have been successfully fabricated. To optimize these multilayer devices, various cyanine dyes were in-vestigated, device architecture and interfaces were engineered. Optical simulations of the stacked thin film structures allowed understanding and tuning device performance. Moreover, organic solar cells which are transparent in the visible range have been integrated into tandem and triple junction solar cells. Low bandgap materials that absorb NIR light were combined with cyanine cells which absorb visible light, thereby more sunlight could be harvested and power conversion efficiency was dramatically enhanced in such tandem solar cells. The photo-stability investigation of cyanine solar cells showed that cyanine dyes were photostable when illuminated in the absence of oxygen and water vapor. We found that the initial degradation of cyanine dye devices during operation was due to the photo-polymerization of the widely used electron acceptor material fullerene C60 and photo-chromism of the hole extraction interfacial layer molybdenum oxide (MoO3).
EPFL2015
Show more
Related units

Loading

Related concepts (35)
Solar cell
A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical phenomenon. It is a form of p
Thin-film solar cell
Thin-film solar cells are made by depositing one or more thin layers (thin films or TFs) of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically
Thin film
A thin film is a layer of material ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as
Show more
Related courses (16)
MICRO-565: Fundamentals & processes for photovoltaic devices
The objective of this lecture is to give an in-depth understanding of the physics and manufacturing processes of photovoltaic solar cells and related devices (photodetectors, photoconductors). The principle and techniques addressed in this lecture will be useful in a wide range of related fields.
MSE-484: Properties of semiconductors and related nanostructures
This course explains the origin of optical and electrical properties of semiconductors. The course elaborates how they change when the semiconductors are reduced to sizes of few nanometers. The course provides also the basis to use software to calculate the properties of hetero/nanostructures.
MICRO-505: Organic and printed electronics
This course addresses the implementation of organic and printed electronics technologies using large area manufacturing techniques. It will provide knowledge on materials, printing techniques, devices, systems, and applications: state of the art and current status on commercialization.
Show more