Coupled models for integrated heart simulations: a numerical study of the fluid dynamics in the left ventricle
Related publications (116)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Background: Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for streamlined, accurate, and high-performance computational tools. Despite the dedicated endeavors ...
We propose a mathematical and numerical model for the simulation of the heart function that couples cardiac electrophysiology, active and passive mechanics and hemodynamics, and includes reduced models for cardiac valves and the circulatory system. Our mod ...
Computational fluid dynamics (CFD) is an important tool for the simulation of the cardiovascular function and dysfunction. Due to the complexity of the anatomy, the transitional regime of blood flow in the heart, and the strong mutual influence between the ...
Reducing the computational time required by high-fidelity, full-order models (FOMs) for the solution of problems in cardiac mechanics is crucial to allow the translation of patient-specific simulations into clinical practice. Indeed, while FOMs, such as th ...
This paper deals with the mathematical model that describes the function of the human heart. More specifically, it addresses the equations that express the electromechanical process, that is the mechanical deformation (contraction and relaxation) of the he ...
A unified numerical framework is presented for the modelling of multiphasic viscoelasticand elastic flows. The rheologies considered range from incompressible Newtonian orOldroyd-B viscoelastic fluids to Neo-Hookean elastic solids. The model is formulatedi ...
The human upper limb is a complex musculoskeletal system that can still perform various tasks with impressive efficacy thanks to the ability of the central nervous system to control and modulate the activation of more than 40 muscles.Stroke is a leading ca ...
The aim of this "Face Reconstruction" project is to enable people with paralysis in one half of their face to recover facial expressions. To do this, we’ll replace the paralyzed muscle with an DEA which we’ll connect to the nerve on the other side of the f ...
The renin-angiotensin system (RAS) is a key hormonal system. In recent years, the functional analysis of the novel axis of the RAS (ACE2/Ang-(1-7)/Mas receptor) revealed that its activation can become pro-tective against several pathologies, including card ...
We analyse the haemodynamics of the left atrium, highlighting differences between healthy individuals and patients affected by atrial fibrillation. The computational study is based on patient-specific geometries of the left atria to simulate blood flow dyn ...