Kernel (linear algebra)In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the linear subspace of the domain of the map which is mapped to the zero vector. That is, given a linear map L : V → W between two vector spaces V and W, the kernel of L is the vector space of all elements v of V such that L(v) = 0, where 0 denotes the zero vector in W, or more symbolically: The kernel of L is a linear subspace of the domain V.
Random matrixIn probability theory and mathematical physics, a random matrix is a matrix-valued random variable—that is, a matrix in which some or all elements are random variables. Many important properties of physical systems can be represented mathematically as matrix problems. For example, the thermal conductivity of a lattice can be computed from the dynamical matrix of the particle-particle interactions within the lattice. In nuclear physics, random matrices were introduced by Eugene Wigner to model the nuclei of heavy atoms.
Axiom of dependent choiceIn mathematics, the axiom of dependent choice, denoted by , is a weak form of the axiom of choice () that is still sufficient to develop most of real analysis. It was introduced by Paul Bernays in a 1942 article that explores which set-theoretic axioms are needed to develop analysis. A homogeneous relation on is called a total relation if for every there exists some such that is true. The axiom of dependent choice can be stated as follows: For every nonempty set and every total relation on there exists a sequence in such that for all In fact, x0 may be taken to be any desired element of X.