Publication

Impact of Grid Asymmetries on the Operation and Capacitive Energy Storage Design of Modular Multilevel Converters

Abstract

The grid-connected modular multilevel converter (MMC) is very likely to operate under asymmetric grid conditions. Such a converter features several unique characteristics, whichmake its analysis different from other types of power converters in similar cases. In this paper, the three well-established control techniques, i. e., balanced current and negative sequence current injection for active/reactive power oscillation elimination, are tailored for the MMC case taking into account grid current limitation under fault conditions. Since the focus is laid on the MMC design impact during grid asymmetries, the three methods are compared in terms of branch energy variation increase as well as maximum achievable active power transfer. Moreover, the effect of circulating current second-order harmonic injection for capacitive storage reduction as well as dc-link oscillation elimination is also studied. Finally, experimental results from a downscaled laboratory prototype verify the theoretical studies.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.