Publication

Fault reactivation during CO2 sequestration: Effects of well orientation on seismicity and leakage

Victor Vilarrasa Riano
2015
Journal paper
Abstract

Injection or withdrawal of fluid at depth may trigger felt seismicity. Such human-induced seismicity is a key environmental concern related to the exploitation of natural underground resources. Thus, understanding how to avoid triggering felt earthquakes plays a crucial role in the success of underground anthropogenic activities, such as CO2 geological storage. In this work, we conduct 3D simulations of injection-triggered fault reactivation, in order to investigate the effects of well geometry on seismic rupture and CO2 leakage. We analyze two different cases of injection, through (1) a vertical and (2) a horizontal well. Simulation results for the vertical well show the fault pressurizing faster and more locally than for the horizontal well, resulting in a smaller seismic event. For the horizontal well, the pressure is distributed over a wider area along the fault, which requires a longer time to reactivate, but results in a larger event. Fault reactivation also produces changes in damage-zone and fault-core permeability, allowing the CO2 to leak from the injection zone through overlying caprock, toward shallower depths. Although the calculated fault permeability enhancement is similar for the two cases, results show a slightly higher leakage rate for the vertical well in the region close to the well itself, while the leakage resulting from injection through the horizontal well is more widely distributed.Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.