Confined vortices in topologically massive U(1) x U(1) theory
Related publications (34)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A class of numerical schemes is developed for the study of charged particle transport in complex stationary electromagnetic fields and tested for fields obtained from a numerical solution of the magneto-hydrodynamic equation. The performances of these sche ...
A new finite element heterogeneous multiscale method (FE-HMM) is proposed for the numerical solution of the wave equation over long times in a rapidly varying medium. Our new FE-HMM-L method captures not only the short-time behavior of the wave field, well ...
We study in this article the representation theory of a family of super algebras, called the super Yang-Mills algebras, by exploiting the Kirillov orbit method à la Dixmier for nilpotent super Lie algebras. These super algebras are an extension of the so-c ...
We study the entanglement of multiple polariton modes, which results in continuous variable cluster states suitable for quantum computation. Schemes are based on parametric scattering between spin-polarized lower and upper polariton branches in planar micr ...
We introduce a new convex formulation for stable principal component pursuit (SPCP) to decompose noisy signals into low-rank and sparse representations. For numerical solutions of our SPCP formulation, we first develop a convex variational framework and th ...
A point-wise approach that can be used efficiently in the numerical solution of Electric Field Integral Equations is introduced. The algorithm is based on the so-called magic distance concept, which defines exactly the point-to-point equivalent of a four-d ...
We consider elliptic PDEs (partial differential equations) in the framework of isogeometric analysis, i.e., we treat the physical domain by means of a B-spline or NURBS mapping which we assume to be regular. The numerical solution of the PDE is computed by ...
We consider the fluid-structure interaction problem arising in haemodynamic applications. The finite elasticity equations for the vessel are written in Lagrangian form, while the Navier-Stokes equations for the blood in Arbitrary Lagrangian Eulerian form. ...
This paper investigates the load-bearing capacity of a perfectly smooth retaining wall laterally supported at both ends assuming that the wall fails by the development of three plastic hinges. The study considers the case of a cohesionless elastic–perfectl ...
A general continuum theory for particle size segregation and diffusive remixing in polydisperse granular avalanches is formulated using mixture theory. Comparisons are drawn to existing segregation theories for bi-disperse mixtures and the case of a ternar ...