**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Expectation Propagation for Rectified Linear Poisson Regression

Abstract

The Poisson likelihood with rectified linear function as non-linearity is a physically plausible model to discribe the stochastic arrival process of photons or other particles at a detector. At low emission rates the discrete nature of this process leads to measurement noise that behaves very differently from additive white Gaussian noise. To address the intractable inference problem for such models, we present a novel efficient and robust Expectation Propagation algorithm entirely based on analytically tractable computations operating re- liably in regimes where quadrature based implementations can fail. Full posterior inference therefore becomes an attractive alternative in areas generally dominated by methods of point estimation. Moreover, we discuss the rectified linear function in the context of other common non-linearities and identify situations where it can serve as a robust alternative.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (3)

Bayesian inference

Bayesian inference (ˈbeɪziən or ˈbeɪʒən ) is a method of statistical inference in which Bayes' theorem is used to update the probability for a hypothesis as more evidence or information becomes available. Bayesian inference is an important technique in statistics, and especially in mathematical statistics. Bayesian updating is particularly important in the dynamic analysis of a sequence of data. Bayesian inference has found application in a wide range of activities, including science, engineering, philosophy, medicine, sport, and law.

Statistical inference

Statistical inference is the process of using data analysis to infer properties of an underlying distribution of probability. Inferential statistical analysis infers properties of a population, for example by testing hypotheses and deriving estimates. It is assumed that the observed data set is sampled from a larger population. Inferential statistics can be contrasted with descriptive statistics. Descriptive statistics is solely concerned with properties of the observed data, and it does not rest on the assumption that the data come from a larger population.

Poisson regression

In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters. A Poisson regression model is sometimes known as a log-linear model, especially when used to model contingency tables.