Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Conventional device scaling has been the main guiding principle of the MOS device engineering over these past years. However, this aggressive scaling would be eventually limited due to the inability to remove the heat generated by MOSFET devices. The power ...
The growing research on two-dimensional materials reveals their exceptional physical properties and enormous potential for future applications and investigation of advanced physics phenomena. They represent the ultimate limit in terms of active channel thi ...
We present the first steps to develop radiation sensors based on the graphene field effect transistor technology. Such a sensor exploits the ambipolar behavior of graphene near its Dirac point and it is not dependent on collecting charges, but it senses io ...
Excellent mechanical properties and the presence of piezoresistivity make single layers of transition metal dichalcogenides (TMDCs) viable candidates for integration in nanoelectromechanical systems (NEMS). We report on the realization of electromechanical ...
Nowadays, the interest in 2D materials has gone far beyond graphene. Specially, monolayers of transition metal dichalcogenides (TMDs) offer a broad spectrum of electronic and optical properties, and show the potential to revolutionize the electronics indus ...
The development of 2D nanomaterial coatings across metal surfaces is a challenge due to the mismatch between the metal microstructure and the nanoscale materials. The naturally occurring thin oxidative layer present across all metal surfaces, may lead to l ...
We studied the nonlinear optical properties of single layer graphene using high terahertz (THz) fields. With the use of a back gate and cooling down the sample to cryogenic temperatures we are able to spectrally probe the nonlinear THz properties of intrin ...
In this work, we experimentally report the figures of merit of state-of-the-art heterostructure Tunnel Field-Effect-Transistor (TFET) arrays from room (300K) down to cryogenic temperature (10K) at supply voltages below 400mV. We demonstrate here, for the f ...
The ability to perform first-principles calculations of electronic and vibrational properties of two-dimensional heterostructures in a field-effect setup is crucial for the understanding and design of next-generation devices. We present here an implementat ...
Improvements in manufacturing processes inspired by the semiconductor integrated circuit industry have seen a sharp reduction in dimensions of microelectromechanical systems (MEMS), leading to the emergence of its submicron counterpart – nanoelectromechani ...