We consider the group testing problem, in which one seeks to identify a subset of defective items within a larger set of items based on a number of noisy tests. While matching achievability and converse bounds are known in several cases of interest for i.i.d.~measurement matrices, less is known regarding converse bounds for arbitrary measurement matrices. We address this by presenting two converse bounds for arbitrary matrices and general noise models. First, we provide a strong converse bound () that matches existing achievability bounds in several cases of interest. Second, we provide a weak converse bound () that matches existing achievability bounds in greater generality.
Florent Gérard Krzakala, Lenka Zdeborová, Emanuele Troiani, Vittorio Erba