Publication

Time-dependent failure analysis of large block size riprap as bank protection in mountain rivers

Abstract

Erodible river banks need to be safe against the possible scouring during flood events in mountain rivers. The consequences of the bank failure are probably lateral uncontrolled erosion and flooding with disastrous losses in residential areas or damage of infrastructures. Among all flood protection measures that keep the riverbank safe against erosion and damage, riprap revetment is one of the most commonly used structures. In order to ensure the safest design, determining the required riprap size is one of the most important factors. Several methods of riprap sizing exist which are mostly evolved for dumped median size blocks. However, in mountain rivers and steep channels, the extra stability has to be ensured by using the large, heavy blocks as bank riprap protection, which have to be individually placed because of their weight. Such arrangement generates additional resistance against flow erosion since the space between the blocks is minimized, and the interlocking forces among the blocks are increased. The behavior of the latter protection was rarely studied for alpine river conditions, and no adapted design criteria exist. Therefore, an experimental study was carried out. This research investigates the effect of packed placement of riprap on sizing, the resistance to failure and the time to failure of riprap. Comparison with the existing design methods is also performed considering the effect of riprap thickness and bank slope. This is studied by means of 123 series of systematic tests of compressed riprap and 34 tests of dumped ones. The experiments were carried out using a 10 m long and 1.5 m wide flume with a rough fixed bed at the Laboratory of Hydraulic Constructions (LCH) at École Polytechnique Fédérale de Lausanne (EPFL). Riprap was reproduced with uniform crushed stones with three block sizes namely D50= 0.037, 0.042 and 0.047 m. Tests were conducted on streamwise bed slopes of S= 0.015, 0.03 and 0.055, and riprap bank slopes of 35°, 31° and 27° under supercritical flow conditions and for a maximum of three hours of test duration. The porosity which is an effective factor on the stability is assessed and the results show a reduction of 2% for smallest size to 10% for the largest size of packed blocks. An empirical relationship between relative roughness and modified Froude number is discussed. Then a sizing riprap empirical formula for large blocks individually placed on supercritical flow is herein developed; considering the riprap thickness and bank slope. This empirical relationship is compared with existing formulae. As a further step based on a time-based analysis of the failure process, a relationship among time to failure, shear velocity, and dimensionless bed shear stress is established. An empirical relationship was established which allows to estimate the time to failure of the riprap bank protections. The influence of a second layer on the time to the failure and on the bank stability is also analyzed. For the same longitudinal channel slope and bank slope, the second layer significantly stabilizes the bank protection and postpones its failure time. Nevertheless, during the test, the block erosion rate is increased significantly (almost twice) for two layers comparing to one layer riprap. Finally, the potential failure probabilities of riprap are evaluated by using Monte Carlo Simulation and Moment Analysis Methods as well as Rosenblueth Point Estimation Method. The advantages of this probabilistic model are that it can cover different failure mechanisms and make use of the multivariate probabilistic method. The probability of failure in various modes, namely direct block erosion, toe scouring and overtopping, has been defined. The method was applied to two rivers in Switzerland; namely Kleine Emme and Brenno. The probability of failure for different mechanisms based on the expected sediment transport regime under climate change is defined for these two rivers as a case study.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (38)
Bank erosion
Bank erosion is the wearing away of the banks of a stream or river. This is distinguished from erosion of the bed of the watercourse, which is referred to as scour. The roots of trees growing by a stream are undercut by such erosion. As the roots bind the soil tightly, they form abutments which jut out over the water. These have a significant effect upon the rate and progress of the erosion. There are a variety of methods for measuring river bank erosion rates.
Erosion
Erosion is the action of surface processes (such as water flow or wind) that removes soil, rock, or dissolved material from one location on the Earth's crust and then transports it to another location where it is deposited. Erosion is distinct from weathering which involves no movement. Removal of rock or soil as clastic sediment is referred to as physical or mechanical erosion; this contrasts with chemical erosion, where soil or rock material is removed from an area by dissolution.
Failure mode and effects analysis
Failure mode and effects analysis (FMEA; often written with "failure modes" in plural) is the process of reviewing as many components, assemblies, and subsystems as possible to identify potential failure modes in a system and their causes and effects. For each component, the failure modes and their resulting effects on the rest of the system are recorded in a specific FMEA worksheet. There are numerous variations of such worksheets.
Show more
Related publications (51)

Capsizing due to friction-induced twist in the failure of stopper knots

Pedro Miguel Nunes Pereira de Almeida Reis, Paul Johanns

We investigate the failure mechanism of stopper knots, with a particular focus on the figure -8 knot as a representative example. Stopper knots are widely used in climbing, sailing, racket stringing, and sewing to maintain tension in ropes, strings, or thr ...
Elsevier2024

Mechanistic 2D flow-erosion modelling of vegetated river banks

Giovanni De Cesare, Paolo Perona, Massimiliano Schwarz

We present a simple, vertically-explicit 2D model of river bank erosion that also takes the effect of sediment stabilization by plant roots into account. The model is solved in quasi-analytical form for an exemplary non-stationary hydrograph temporal signa ...
2023

Biomorphodynamics of river banks in vegetated channels with self-formed width

Paolo Perona

Laboratory and field studies investigating the mutual interaction between riparian vegetation dynamics and river morphodynamics have revealed that riparian vegetation may play an important role in the evolution of channel beds and river banks. In order to ...
2022
Show more
Related MOOCs (1)
Analyse du cycle de vie environmental
MOOC introduction à la pensée du cycle de vie et aux concepts théoriques pour réaliser et critiquer une analyse du cycle de vie.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.