Erosion is the action of surface processes (such as water flow or wind) that removes soil, rock, or dissolved material from one location on the Earth's crust and then transports it to another location where it is deposited. Erosion is distinct from weathering which involves no movement. Removal of rock or soil as clastic sediment is referred to as physical or mechanical erosion; this contrasts with chemical erosion, where soil or rock material is removed from an area by dissolution. Eroded sediment or solutes may be transported just a few millimetres, or for thousands of kilometres.
Agents of erosion include rainfall; bedrock wear in rivers; coastal erosion by the sea and waves; glacial plucking, abrasion, and scour; areal flooding; wind abrasion; groundwater processes; and mass movement processes in steep landscapes like landslides and debris flows. The rates at which such processes act control how fast a surface is eroded. Typically, physical erosion proceeds the fastest on steeply sloping surfaces, and rates may also be sensitive to some climatically-controlled properties including amounts of water supplied (e.g., by rain), storminess, wind speed, wave fetch, or atmospheric temperature (especially for some ice-related processes). Feedbacks are also possible between rates of erosion and the amount of eroded material that is already carried by, for example, a river or glacier. The transport of eroded materials from their original location is followed by deposition, which is arrival and emplacement of material at a new location.
While erosion is a natural process, human activities have increased by 10–40 times the rate at which soil erosion is occurring globally. At agriculture sites in the Appalachian Mountains, intensive farming practices have caused erosion at up to 100 times the natural rate of erosion in the region. Excessive (or accelerated) erosion causes both "on-site" and "off-site" problems. On-site impacts include decreases in agricultural productivity and (on natural landscapes) ecological collapse, both because of loss of the nutrient-rich upper soil layers.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours donne aux étudiants des solides connaissances théoriques en hydraulique fluviale, et enseigne les bases de l'ingénierie fluviale dans le but de concilier la protection contre les crues et la
Introduction, concepts de base; implosion d'une bulle de cavitation; dynamique des cavits attachées; cavitation dans les structures tourbillonnaires; applications industrielles.
This course aims to provide theoretical fundamentals in flow measurement science, and advanced knowledge regarding measurement methods, tools and instrumentation applied to experimental hydraulics, in
Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand and silt can be carried in suspension in river water and on reaching the sea bed deposited by sedimentation; if buried, they may eventually become sandstone and siltstone (sedimentary rocks) through lithification.
Soil, also commonly referred to as earth, is a mixture of organic matter, minerals, gases, liquids, and organisms that together support life of plants and soil organisms. Some scientific definitions distinguish dirt from soil by restricting the former term specifically to displaced soil. Soil consists of a solid phase of minerals and organic matter (the soil matrix), as well as a porous phase that holds gases (the soil atmosphere) and water (the soil solution). Accordingly, soil is a three-state system of solids, liquids, and gases.
A glacier (USpronˈɡleɪʃər; UKˈɡlæsiər,_ˈgleɪsiər) is a persistent body of dense ice that is constantly moving under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such as crevasses and seracs, as it slowly flows and deforms under stresses induced by its weight. As it moves, it abrades rock and debris from its substrate to create landforms such as cirques, moraines, or fjords.
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Rainfall characteristics such as intensity, duration, and frequency are key determinants of the hydro-geomorphological response of a catchment. The presence of non-linear and threshold effects makes the relationship between rainfall variability and geomorp ...
2024
, ,
We present a simple, vertically-explicit 2D model of river bank erosion that also takes the effect of sediment stabilization by plant roots into account. The model is solved in quasi-analytical form for an exemplary non-stationary hydrograph temporal signa ...
The surface erosion of biased electrodes immersed in a radio frequency (RF) plasma was investigated in oblique magnetic fields ranging from 0.1 T to 3.5 T. The plasma potential and density in the vicinity of the biased electrode have been measured using an ...