NP (complexity)In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems. NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine. NP is the set of decision problems solvable in polynomial time by a nondeterministic Turing machine.
Category (mathematics)In mathematics, a category (sometimes called an abstract category to distinguish it from a ) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the , whose objects are sets and whose arrows are functions. is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent.
Monoid (category theory)In , a branch of mathematics, a monoid (or monoid object, or internal monoid, or algebra) (M, μ, η) in a (C, ⊗, I) is an M together with two morphisms μ: M ⊗ M → M called multiplication, η: I → M called unit, such that the pentagon and the unitor diagram commute. In the above notation, 1 is the identity morphism of M, I is the unit element and α, λ and ρ are respectively the associativity, the left identity and the right identity of the monoidal category C. Dually, a comonoid in a monoidal category C is a monoid in the Cop.
Salience (neuroscience)Salience (also called saliency) is that property by which some thing stands out. Salient events are an attentional mechanism by which organisms learn and survive; those organisms can focus their limited perceptual and cognitive resources on the pertinent (that is, salient) subset of the sensory data available to them. Saliency typically arises from contrasts between items and their neighborhood. They might be represented, for example, by a red dot surrounded by white dots, or by a flickering message indicator of an answering machine, or a loud noise in an otherwise quiet environment.
Computational complexity theoryIn theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used.
Parameterized complexityIn computer science, parameterized complexity is a branch of computational complexity theory that focuses on classifying computational problems according to their inherent difficulty with respect to multiple parameters of the input or output. The complexity of a problem is then measured as a function of those parameters. This allows the classification of NP-hard problems on a finer scale than in the classical setting, where the complexity of a problem is only measured as a function of the number of bits in the input.
Category of small categoriesIn mathematics, specifically in , the category of small categories, denoted by Cat, is the whose objects are all and whose morphisms are functors between categories. Cat may actually be regarded as a with natural transformations serving as 2-morphisms. The initial object of Cat is the empty category 0, which is the category of no objects and no morphisms. The terminal object is the terminal category or trivial category 1 with a single object and morphism. The category Cat is itself a , and therefore not an object of itself.
Language processing in the brainIn psycholinguistics, language processing refers to the way humans use words to communicate ideas and feelings, and how such communications are processed and understood. Language processing is considered to be a uniquely human ability that is not produced with the same grammatical understanding or systematicity in even human's closest primate relatives. Throughout the 20th century the dominant model for language processing in the brain was the Geschwind-Lichteim-Wernicke model, which is based primarily on the analysis of brain-damaged patients.
Accessible categoryThe theory of accessible categories is a part of mathematics, specifically of . It attempts to describe categories in terms of the "size" (a cardinal number) of the operations needed to generate their objects. The theory originates in the work of Grothendieck completed by 1969, and Gabriel and Ulmer (1971). It has been further developed in 1989 by Michael Makkai and Robert Paré, with motivation coming from model theory, a branch of mathematical logic. A standard text book by Adámek and Rosický appeared in 1994.
Dual objectIn , a branch of mathematics, a dual object is an analogue of a dual vector space from linear algebra for in arbitrary . It is only a partial generalization, based upon the categorical properties of duality for finite-dimensional vector spaces. An object admitting a dual is called a dualizable object. In this formalism, infinite-dimensional vector spaces are not dualizable, since the dual vector space V∗ doesn't satisfy the axioms. Often, an object is dualizable only when it satisfies some finiteness or compactness property.