**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Wavelet Statistics of Sparse and Self-Similar Images

Abstract

It is well documented that natural images are compressible in wavelet bases and tend to exhibit fractal properties. In this paper, we investigate statistical models that mimic these behaviors. We then use our models to make predictions on the statistics of the wavelet coefficients. Following an innovation modeling approach, we identify a general class of finite-variance self-similar sparse random processes. We first prove that spatially dilated versions of self-similar sparse processes are asymptotically Gaussian as the dilation factor increases. Based on this fundamental result, we show that the coarse-scale wavelet coefficients of these processes are also asymptotically Gaussian, provided the wavelet has enough vanishing moments. Moreover, we quantify the degree of Gaussianity by deriving the theoretical evolution of the kurtosis of the wavelet coefficients across scales. Finally, we apply our analysis to one- and two-dimensional signals, including natural images, and show that the wavelet coefficients tend to become Gaussian at coarse scales.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (32)

Related publications (35)

Related MOOCs (6)

Discrete wavelet transform

In numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time). Haar wavelet The first DWT was invented by Hungarian mathematician Alfréd Haar. For an input represented by a list of numbers, the Haar wavelet transform may be considered to pair up input values, storing the difference and passing the sum.

Wavelet

A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases or decreases, and then returns to zero one or more times. Wavelets are termed a "brief oscillation". A taxonomy of wavelets has been established, based on the number and direction of its pulses. Wavelets are imbued with specific properties that make them useful for signal processing. For example, a wavelet could be created to have a frequency of Middle C and a short duration of roughly one tenth of a second.

Time dilation

Time dilation is the difference in elapsed time as measured by two clocks, either due to a relative velocity between them (special relativity) or due to a difference in gravitational potential between their locations (general relativity). When unspecified, "time dilation" usually refers to the effect due to velocity. After compensating for varying signal delays due to the changing distance between an observer and a moving clock (i.e. Doppler effect), the observer will measure the moving clock as ticking slower than a clock that is at rest in the observer's own reference frame.

Digital Signal Processing [retired]

The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a

Digital Signal Processing

Digital Signal Processing is the branch of engineering that, in the space of just a few decades, has enabled unprecedented levels of interpersonal communication and of on-demand entertainment. By rewo

Digital Signal Processing I

Basic signal processing concepts, Fourier analysis and filters. This module can
be used as a starting point or a basic refresher in elementary DSP

Michaël Unser, John Paul Ward, Ildar Khalidov

The connection between derivative operators and wavelets is well known. Here we generalize the concept by constructing multiresolution approximations and wavelet basis functions that act like Fourier multiplier operators. This construction follows from a s ...

Martin Vetterli, Vladan Velisavljevic, Pier Luigi Dragotti

Despite the success of the standard wavelet transform (WT) in image processing in recent years, the efficiency and sparsity of its representation are limited by the spatial symmetry and separability of its basis functions built in the horizontal and vertic ...

, ,

The connection between derivative operators and wavelets is well known. Here we generalize the concept by constructing multiresolution approximations and wavelet basis functions that act like Fourier multiplier operators. This construction follows from a s ...