Space (mathematics)In mathematics, a space is a set (sometimes called a universe) with some added structure. While modern mathematics uses many types of spaces, such as Euclidean spaces, linear spaces, topological spaces, Hilbert spaces, or probability spaces, it does not define the notion of "space" itself. A space consists of selected mathematical objects that are treated as points, and selected relationships between these points. The nature of the points can vary widely: for example, the points can be elements of a set, functions on another space, or subspaces of another space.
Graph traversalIn computer science, graph traversal (also known as graph search) refers to the process of visiting (checking and/or updating) each vertex in a graph. Such traversals are classified by the order in which the vertices are visited. Tree traversal is a special case of graph traversal. Unlike tree traversal, graph traversal may require that some vertices be visited more than once, since it is not necessarily known before transitioning to a vertex that it has already been explored.
Euclidean domainIn mathematics, more specifically in ring theory, a Euclidean domain (also called a Euclidean ring) is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of the Euclidean division of integers. This generalized Euclidean algorithm can be put to many of the same uses as Euclid's original algorithm in the ring of integers: in any Euclidean domain, one can apply the Euclidean algorithm to compute the greatest common divisor of any two elements.
Crown graphIn graph theory, a branch of mathematics, a crown graph on 2n vertices is an undirected graph with two sets of vertices {u_1, u_2, ..., u_n} and {v_1, v_2, ..., v_n} and with an edge from u_i to v_j whenever i ≠ j. The crown graph can be viewed as a complete bipartite graph from which the edges of a perfect matching have been removed, as the bipartite double cover of a complete graph, as the tensor product K_n × K_2, as the complement of the Cartesian direct product of K_n and K_2, or as a bipartite Kneser graph H_n,1 representing the 1-item and (n – 1)-item subsets of an n-item set, with an edge between two subsets whenever one is contained in the other.
Nash embedding theoremsThe Nash embedding theorems (or imbedding theorems), named after John Forbes Nash Jr., state that every Riemannian manifold can be isometrically embedded into some Euclidean space. Isometric means preserving the length of every path. For instance, bending but neither stretching nor tearing a page of paper gives an isometric embedding of the page into Euclidean space because curves drawn on the page retain the same arclength however the page is bent.
Ultrabornological spaceIn functional analysis, a topological vector space (TVS) is called ultrabornological if every bounded linear operator from into another TVS is necessarily continuous. A general version of the closed graph theorem holds for ultrabornological spaces. Ultrabornological spaces were introduced by Alexander Grothendieck (Grothendieck [1955, p. 17] "espace du type (β)"). Let be a topological vector space (TVS). A disk is a convex and balanced set.
Split horizon route advertisementIn computer networking, split-horizon route advertisement is a method of preventing routing loops in distance-vector routing protocols by prohibiting a router from advertising a route back onto the interface from which it was learned. The concept was suggested in 1974 by Torsten Cegrell, and originally implemented in the ARPANET-inspired Swedish network TIDAS. Here is some basic terminology: Route poisoning: if a node N learns that its route to a destination D is unreachable, inform that to all nodes in the network by sending them a message stating that the distance from N to D, as perceived by N, is infinite.
Hausdorff distanceIn mathematics, the Hausdorff distance, or Hausdorff metric, also called Pompeiu–Hausdorff distance, measures how far two subsets of a metric space are from each other. It turns the set of non-empty compact subsets of a metric space into a metric space in its own right. It is named after Felix Hausdorff and Dimitrie Pompeiu. Informally, two sets are close in the Hausdorff distance if every point of either set is close to some point of the other set.