In mathematics, more specifically in ring theory, a Euclidean domain (also called a Euclidean ring) is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of the Euclidean division of integers. This generalized Euclidean algorithm can be put to many of the same uses as Euclid's original algorithm in the ring of integers: in any Euclidean domain, one can apply the Euclidean algorithm to compute the greatest common divisor of any two elements. In particular, the greatest common divisor of any two elements exists and can be written as a linear combination
of them (Bézout's identity). Also every ideal in a Euclidean domain is principal, which implies a suitable generalization of the fundamental theorem of arithmetic: every Euclidean domain is a unique factorization domain.
It is important to compare the class of Euclidean domains with the larger class of principal ideal domains (PIDs). An arbitrary PID has much the same "structural properties" of a Euclidean domain (or, indeed, even of the ring of integers), but when an explicit algorithm for Euclidean division is known, one may use the Euclidean algorithm and extended Euclidean algorithm to compute greatest common divisors and Bézout's identity. In particular, the existence of efficient algorithms for Euclidean division of integers and of polynomials in one variable over a field is of basic importance in computer algebra.
So, given an integral domain R, it is often very useful to know that R has a Euclidean function: in particular, this implies that R is a PID. However, if there is no "obvious" Euclidean function, then determining whether R is a PID is generally a much easier problem than determining whether it is a Euclidean domain.
Euclidean domains appear in the following chain of class inclusions:
Let R be an integral domain. A Euclidean function on R is a function f from R  {0} to the non-negative integers satisfying the following fundamental division-with-remainder property:
(EF1) If a and b are in R and b is nonzero, then there exist q and r in R such that a = bq + r and either r = 0 or f (r) < f (b).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction to the path integral formulation of quantum mechanics. Derivation of the perturbation expansion of Green's functions in terms of Feynman diagrams. Several applications will be presented,
The course provides an introduction to the study of curves and surfaces in Euclidean spaces. We will learn how we can apply ideas from differential and integral calculus and linear algebra in order to
Explores Euclidean correlation functions and the transition to real-time correlators, emphasizing analyticity and time ordering in thermal n-point functions.
In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principal, although some authors (e.g., Bourbaki) refer to PIDs as principal rings. The distinction is that a principal ideal ring may have zero divisors whereas a principal ideal domain cannot.
In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as or Gaussian integers share many properties with integers: they form a Euclidean domain, and have thus a Euclidean division and a Euclidean algorithm; this implies unique factorization and many related properties. However, Gaussian integers do not have a total ordering that respects arithmetic.
In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. For example, The theorem says two things about this example: first, that 1200 be represented as a product of primes, and second, that no matter how this is done, there will always be exactly four 2s, one 3, two 5s, and no other primes in the product.
It is well-known that for any integral domain R, the Serre conjecture ring R(X), i.e., the localization of the univariate polynomial ring R[X] at monic polynomials, is a Bezout domain of Krull dimension
obtain algorithmically effective versions of the dense lattice sphere packings constructed from orders in Q-division rings by the first author. The lattices in question are lifts of suitable codes from prime characteristic to orders O in Q-division rings a ...
We consider the problem of learning implicit neural representations (INRs) for signals on non-Euclidean domains. In the Euclidean case, INRs are trained on a discrete sampling of a signal over a regular lattice. Here, we assume that the continuous signal e ...