Euclidean geometryEuclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated earlier, Euclid was the first to organize these propositions into a logical system in which each result is proved from axioms and previously proved theorems.
Absolute geometryAbsolute geometry is a geometry based on an axiom system for Euclidean geometry without the parallel postulate or any of its alternatives. Traditionally, this has meant using only the first four of Euclid's postulates. The term was introduced by János Bolyai in 1832. It is sometimes referred to as neutral geometry, as it is neutral with respect to the parallel postulate. The first four of Euclid's postulates are now considered insufficient as a basis of Euclidean geometry, so other systems (such as Hilbert's axioms without the parallel axiom) are used instead.
Alpha CentauriAlpha Centauri (α Centauri, Alpha Cen, or α Cen) is a triple star system in the southern constellation of Centaurus. It consists of three stars: Rigil Kentaurus (Alpha Centauri A), Toliman (B) and Proxima Centauri (C). Proxima Centauri is also the closest star to the Sun at 4.2465 light-years (1.3020 pc). Alpha Centauri A and B are Sun-like stars (Class G and K, respectively), and together they form the binary star system Alpha Centauri AB. To the naked eye, the two main components appear to be a single star with an apparent magnitude of −0.
Discrete geometryDiscrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.
Peculiar velocityPeculiar motion or peculiar velocity refers to the velocity of an object relative to a rest frame — usually a frame in which the average velocity of some objects is zero. In galactic astronomy, peculiar motion refers to the motion of an object (usually a star) relative to a Galactic rest frame. Local objects are commonly examined as to their vectors of position angle and radial velocity. These can be combined through vector addition to state the object's motion relative to the Sun.
Flow velocityIn continuum mechanics the flow velocity in fluid dynamics, also macroscopic velocity in statistical mechanics, or drift velocity in electromagnetism, is a vector field used to mathematically describe the motion of a continuum. The length of the flow velocity vector is the flow speed and is a scalar. It is also called velocity field; when evaluated along a line, it is called a velocity profile (as in, e.g., law of the wall).
Numerical weather predictionNumerical weather prediction (NWP) uses mathematical models of the atmosphere and oceans to predict the weather based on current weather conditions. Though first attempted in the 1920s, it was not until the advent of computer simulation in the 1950s that numerical weather predictions produced realistic results. A number of global and regional forecast models are run in different countries worldwide, using current weather observations relayed from radiosondes, weather satellites and other observing systems as inputs.
Parallel (geometry)In geometry, parallel lines are coplanar infinite straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. Parallel curves are curves that do not touch each other or intersect and keep a fixed minimum distance. In three-dimensional Euclidean space, a line and a plane that do not share a point are also said to be parallel. However, two noncoplanar lines are called skew lines. Parallel lines are the subject of Euclid's parallel postulate.
Froude numberIn continuum mechanics, the Froude number (Fr, after William Froude, ˈfruːd) is a dimensionless number defined as the ratio of the flow inertia to the external field (the latter in many applications simply due to gravity). The Froude number is based on the speed–length ratio which he defined as: where u is the local flow velocity, g is the local external field, and L is a characteristic length. The Froude number has some analogy with the Mach number.
Luhman 16Luhman 16 (WISE 1049−5319, WISE J104915.57−531906.1) is a binary brown-dwarf system in the southern constellation Vela at a distance of approximately from the Sun. These are the closest-known brown dwarfs and the closest system found since the measurement of the proper motion of Barnard's Star in 1916, and the third-closest-known system to the Sun (after the Alpha Centauri system and Barnard's Star). The primary is of spectral type L7.5 and the secondary of type T0.5 ± 1 (and is hence near the L–T transition).