Concept

Absolute geometry

Summary
Absolute geometry is a geometry based on an axiom system for Euclidean geometry without the parallel postulate or any of its alternatives. Traditionally, this has meant using only the first four of Euclid's postulates. The term was introduced by János Bolyai in 1832. It is sometimes referred to as neutral geometry, as it is neutral with respect to the parallel postulate. The first four of Euclid's postulates are now considered insufficient as a basis of Euclidean geometry, so other systems (such as Hilbert's axioms without the parallel axiom) are used instead. In Euclid's Elements, the first 28 Propositions and Proposition 31 avoid using the parallel postulate, and therefore are valid in absolute geometry. One can also prove in absolute geometry the exterior angle theorem (an exterior angle of a triangle is larger than either of the remote angles), as well as the Saccheri–Legendre theorem, which states that the sum of the measures of the angles in a triangle has at most 180°. Proposition 31 is the construction of a parallel line to a given line through a point not on the given line. As the proof only requires the use of Proposition 27 (the Alternate Interior Angle Theorem), it is a valid construction in absolute geometry. More precisely, given any line l and any point P not on l, there is at least one line through P which is parallel to l. This can be proved using a familiar construction: given a line l and a point P not on l, drop the perpendicular m from P to l, then erect a perpendicular n to m through P. By the alternate interior angle theorem, l is parallel to n. (The alternate interior angle theorem states that if lines a and b are cut by a transversal t such that there is a pair of congruent alternate interior angles, then a and b are parallel.) The foregoing construction, and the alternate interior angle theorem, do not depend on the parallel postulate and are therefore valid in absolute geometry.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.