Robust atomistic calculation of dislocation line tension
Related publications (37)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Mo-Ti alloys form solid solutions over a wide range of compositions, with lattice misfit parameters increasing significantly with titanium content. This indicates a strong increase in the critical stress for edge dislocation motion. Here, we probe the tran ...
Under common processing conditions, both dilute and complex concentrated alloys are often realized as random alloys, with no correlation in the occupancy of lattice sites by the constituent atom types. The current thesis primary addresses two problems in r ...
Dislocation motion through a random alloy is impeded by its interactions with the compositional fluctuations intrinsic to the alloy, leading to strengthening. A recent theory predicts the strengthening as a function of the solute-dislocation interaction en ...
Large scale 3D atomistic simulations are performed to study the interaction between a curved dislocation with a dominant screw character and a Coherent Twin Boundary (CTB). Three FCC metals (Al, Cu and Ni) are addressed using 6 embedded-atom method (EAM) p ...
Twinning in fcc High Entropy Alloys (HEAs) has been implicated as a possible mechanism for hardening that enables enhanced ductility. Here, a theory for the twinning stress is developed analogous to recent theories for yield stress. Specifically, the stres ...
Dislocation multiplication in plasticity research is often connected to the picture of a Frank-Read source. Although it is known that this picture is not applicable after easy glide deformation, plasticity theories often assume Frank-Read-type models for d ...
The mechanical strength of metals depends on their resistance against various microscopic
deformation processes. In ductile metals, the most important process is shearing of the crystal
lattice by dislocations. One of the fundamental aspects of dislocation ...
To reveal the operating mechanisms of plastic deformation in an FCC high-entropy alloy, the activation volumes in CrMnFeCoNi have been measured as a function of plastic strain and temperature between 77 K and 423 K using repeated load relaxation experiment ...
Precipitation strengthening is one of the key strengthening strategies in many industrial alloys like aluminum alloys, nickel-based superalloys, etc. The yield strength of alloy is improved by forming precipitates in materials and employing them as obstacl ...
The detrimental effects of the H on the mechanical properties of the metals are known for more than a century. One of the most important degradation mechanisms is H embrittlement (HE). In this thesis, we examined a few famous proposed mechanisms in the fie ...